Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan 25;264(3):1638-43.

Loss of a calcium requirement for protein synthesis in pituitary cells following thermal or chemical stress

Affiliations
  • PMID: 2912978
Free article

Loss of a calcium requirement for protein synthesis in pituitary cells following thermal or chemical stress

M A Brostrom et al. J Biol Chem. .
Free article

Abstract

Ca2+ is required for the maintenance of high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). Following thermal stress at 46 degrees C or chemical stress from exposure to sodium arsenite or 8-hydroxyquinoline, rates of amino acid incorporation in Ca2+-restored GH3 cells were reduced acutely to those of unstressed, Ca2+-depleted control preparations. Sodium arsenite treatment resulted in loss of ability to accumulate polysomes in response to Ca2+. Stressed cells allowed to recover for 2-8 h either with or without Ca2+ in the medium exhibited comparable, increasing rates of amino acid incorporation and the induction of heat shock proteins (hsp). Abolition of the Ca2+-dependent component of translation was proportional to the intensity of the stress. Mild thermal stress (41 degrees C) resulted in the induction of hsp 68 and the retention of Ca2+-dependent protein synthesis; hsp 68 was synthesized in a Ca2+-dependent manner. After arsenite stress, restoration of the Ca2+ requirement for protein synthesis occurred by 24 h, and was preceded by a transitional period during which polysomes accumulated in response to Ca2+ without concomitant increased rates of incorporation. Responses to stress are proposed to include an acute inhibition of normal protein synthesis involving the destruction of Ca2+-stimulated initiation and a protracted period of recovery involving synthesis of the hsp accompanied by Ca2+-independent amino acid incorporation and slowed peptide chain elongation.

PubMed Disclaimer

Publication types

LinkOut - more resources