Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 16;19(4):312-316.
doi: 10.1002/cbic.201700419. Epub 2017 Dec 11.

Production of Hydroxynitrile Lyase from Davallia tyermannii (DtHNL) in Komagataella phaffii and Its Immobilization as a CLEA to Generate a Robust Biocatalyst

Affiliations

Production of Hydroxynitrile Lyase from Davallia tyermannii (DtHNL) in Komagataella phaffii and Its Immobilization as a CLEA to Generate a Robust Biocatalyst

Elisa Lanfranchi et al. Chembiochem. .

Abstract

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L-1 , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.

Keywords: biocatalysis; crosslinked enzyme aggregates; enzymes; hydroxynitrile lyase; immobilization.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources