In Vitro Effects of Serotonin, Melatonin, and Other Related Indole Compounds on Amyloid-β Kinetics and Neuroprotection
- PMID: 29131485
- DOI: 10.1002/mnfr.201700383
In Vitro Effects of Serotonin, Melatonin, and Other Related Indole Compounds on Amyloid-β Kinetics and Neuroprotection
Abstract
Scope: Amyloid-β peptide is the main component of senile plaques in Alzheimer's disease. The inhibition of amyloid-β peptide assembly, the destabilization of amyloid-β peptide aggregates, and the decrease of its cytotoxicity for the prevention of neuronal death are considered neuroprotective effects. In this work, the protective effects against amyloid-β peptide aggregation and cytotoxicity of eight indolic compounds are evaluated: tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 3-indoleacetic acid, tryptophan ethyl ester, and melatonin.
Methods and results: Thioflavin T spectroscopic assay, transmission electron microscopy, western blotting, circular dichroism, NMR, cell viability (thiazolyl blue tetrazolium bromide assay), quantitative PCR, and heme oxygenase activity are used. Serotonin is the most effective compound for inhibiting amyloid-β peptide aggregation. Almost all the indolic compounds tested prevent amyloid-β peptide-induced and increase cell viability, being between 9 and 25%. Melatonin and serotonin are the most active. Moreover, serotonin increased the expression of SIRT-1 and 2, heat shock protein 70, and heme oxygenase activity, this being a possible mechanism underlying the observed neuroprotective effect.
Conclusion: Melatonin and other related indolic compounds, mainly serotonin, show an inhibitory and destabilizing effect on amyloid-β peptide fibril formation and they possess neuroprotective properties related to the vitagenes system.
Keywords: amyloid-β; fibril formation; indolic; neuroprotection; vitagene system.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
