Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 13;10(1):564.
doi: 10.1186/s13071-017-2419-7.

Durability monitoring of long-lasting insecticidal (mosquito) nets (LLINs) in Madagascar: physical integrity and insecticidal activity

Affiliations

Durability monitoring of long-lasting insecticidal (mosquito) nets (LLINs) in Madagascar: physical integrity and insecticidal activity

Sanjiarizaha Randriamaherijaona et al. Parasit Vectors. .

Abstract

Background: Long-lasting insecticidal mosquito nets (LLINs) are highly effective for malaria prevention. However, it is also clear that durability monitoring is essential to predict when, post-distribution, a net population, no longer meets minimum WHO standards and needs to be replaced. Following a national distribution campaign in 2013, we tracked two durability indicators, physical integrity and bio-efficacy at six and 12 months post-distribution. While the loss of net integrity during this period was in line with expectations for a one-year net life, bio-efficacy results suggested that nets were losing insecticidal effect faster than expected. The rate of bio-efficacy loss varied significantly between different net brands.

Methods: We tested 600 randomly selected LLINs, 200 from each of three net brands. Each brand came from different eco-epidemiological zones reflecting the original distribution scheme. Fabric integrity (size and number of holes) was quantified using the proportional hole index (pHI). A subsample of the nets, 134 new nets, 150 at six months and 124 at 12 months, were then tested for bio-efficacy using the World Health Organization (WHO) recommended method.

Results: Three net types, Netprotect®, Royalsentry® and Yorkool®, were followed. After six months, 54%, 39% and 45%, respectively, showed visible loss of integrity. The median pHI by type was estimated to be one, zero and one respectively. The percentage of damaged nets increased after 12 months such that 83.5%, 74% and 68.5%, had holes. The median pHI for each brand of nets was 47.5, 47 and 23. No significant difference in the estimated pHI at either six or 12 months was observed. There was a statistically significant difference in the proportion of hole size category between the three brands (χ 2 = 15.761, df = 4, P = 0.003). In cone bio-assays, mortality of new Yorkool® nets was surprisingly low (48.6%), mortality was 90.2% and 91.3% for Netprotect® and Royalsentry® (F (2, 131) = 81.59, P < 0.0001), respectively. At 12 month use, all tested nets were below the WHO threshold for replacement.

Conclusion: These findings suggest that there is a need for better net quality control before distribution. More frequent replacement of LLINs is probably not an option programmatically. Regardless of prior approval, LLIN durability monitoring for quality assessment as well as net loss following distribution is necessary to improve malaria control efforts.

Keywords: Bio-efficacy; Fabric integrity; Long-lasting insecticide-treated nets; Madagascar; Malaria.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This study was reviewed by both CDC Atlanta and Madagascar local ethics board and was determined quality improvement that did not need ethical clearance. However, written informed consent was sought for participants in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study sites with different brand of nets
Fig. 2
Fig. 2
Sampling locations used for a rectangular type bed net and bioassay
Fig. 3
Fig. 3
Median and interquartile range (IQR 0.25–0.75) of proportionate hole index (pHI)
Fig. 4
Fig. 4
Bio-efficacy results on baseline nets
Fig. 5
Fig. 5
Bio-efficacy results on six months of use, by locality. Localities: A, Toamasina (n = 30); B, Morondava (n = 30); C, Antsiranana (n = 30); D, Ambanja (n = 30); E, Mandoto (n = 21); F, Sakaraha (n = 21)
Fig. 6
Fig. 6
Bio-efficacy results on 12 months of use, by locality. Localities: A, Toamasina (n = 17); B, Morondava (n = 21); C, Antsiranana (n = 17); D, Ambanja (n = 30); E, Mandoto (n = 18); F, Sakaraha (n = 21)

Similar articles

Cited by

References

    1. WHO. World malaria report. Geneva: World Health Organization. 2016:2016.
    1. Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14(1):1–5. doi: 10.1046/j.1365-2915.2000.00211.x. - DOI - PubMed
    1. Madagascar MIS. République de Madagascar Enquête sur les Indicateurs du Paludisme (EIPM) 2013.
    1. Chauvet G, Coz J, Gruchet H, Grjébine A, Lumaret R. Résultats de 5 années d'étude: Contribution à l’étude biologique des vecteurs du paludisme à Madagascar. Med Trop. 1964;24:27–44. - PubMed
    1. Fontenille D, Campbell GHI. Anopheles mascarensis a new malaria vector in Madagascar? Am J Trop Med Hyg. 1992;46:28–30. - PubMed