Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 28;8(47):83030-83037.
doi: 10.18632/oncotarget.18789. eCollection 2017 Oct 10.

The role of indoxyl sulfate in renal anemia in patients with chronic kidney disease

Affiliations

The role of indoxyl sulfate in renal anemia in patients with chronic kidney disease

Chih-Jen Wu et al. Oncotarget. .

Erratum in

Abstract

Renal anemia is a common complication in patients with advanced chronic kidney disease. In vitro studies have shown that indoxyl sulfate decreases erythropoietin production. Whether this effect is seen in vivo remains unclear. Our goal was to explore the role of indoxyl sulfate in renal anemia. We found serum indoxyl sulfate levels are significantly and negatively associated with erythropoietin levels in human. A multiple stepwise linear regression analyses after adjustment for other independent parameters revealed that free indoxyl sulfate, and total indoxyl sulfate were significantly associated with erythropoietin levels. In animal studies, erythropoietin gene and protein expression were markedly inhibited in rats with chronic kidney disease; however, this effect was significantly reversed by lowering serum indoxyl sulfate with AST-120. Indoxyl sulfate may also inhibit erythropoietin expression in animal models with chronic kidney disease. These findings further support the role of indoxyl sulfate in the development of renal anemia.

Keywords: chronic kidney disease; erythropoietin; indoxyl sulfate; renal anemia.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Agreement between EPO and IS analyzed by Pearson’s correlation
(A) ln EPO vs T-IS, r=-0.22, p=0.041 (B) ln EPO vs F-IS, r=-0.25, p=0.021.
Figure 2
Figure 2. The EPO expression status in an animal model
(A) Real-time quantitative PCR was performed to assess the change of EPO mRNA expression in control-sham, CKD and CKD+AST-120 group. EPO mRNA was suppressed in CKD rat. It was restored in rats with feeding AST-120 by lowering serum IS. (B) Western blot analysis. EPO protein expression was also decreased significantly in CKD rat. AST-120 could reverse the inhibition of EPO expression in CKD. n=5 for each, #, p<0.01 compared to control-sham group, *, p<0.05 compared CKD group.

Similar articles

Cited by

References

    1. Nangaku M, Mimura I, Yamaguchi J, Higashijima Y, Wada T, Tanaka T. Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. J Ren Nutr. 2015;25:160–163. - PubMed
    1. Iseki K, Ikemiya Y, Iseki C, Takishita S. Haematocrit and the risk of developing end-stage renal disease. Nephrol Dial Transplant. 2003;18:899–905. - PubMed
    1. Rossert J, Froissart M. Role of anemia in progression of chronic kidney disease. Semin Nephrol. 2006;26:283–289. - PubMed
    1. Roth D, Smith RD, Schulman G, Steinman TI, Hatch FE, Rudnick MR, Sloand JA, Freedman BI, Williams WW, Jr, Shadur CA, Benz RL, Teehan BP, Revicki DA, et al. Effects of recombinant human erythropoietin on renal function in chronic renal failure predialysis patients. Am J Kidney Dis. 1994;24:777–784. - PubMed
    1. Kuriyama S, Tomonari H, Yoshida H, Hashimoto T, Kawaguchi Y, Sakai O. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron. 1997;77:176–185. - PubMed

LinkOut - more resources