Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 15;12(11):e0188232.
doi: 10.1371/journal.pone.0188232. eCollection 2017.

Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB

Affiliations

Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB

Niket Yadav et al. PLoS One. .

Abstract

Eucalyptus oil (EO) used in traditional medicine continues to prove useful for aroma therapy in respiratory ailments; however, there is a paucity of information on its mechanism of action and active components. In this direction, we investigated EO and its dominant constituent 1,8-cineole (eucalyptol) using the murine lung alveolar macrophage (AM) cell line MH-S. In an LPS-induced AM inflammation model, pre-treatment with EO significantly reduced (P ≤0.01or 0.05) the pro-inflammatory mediators TNF-α, IL-1 (α and β), and NO, albeit at a variable rate and extent; 1,8-cineole diminished IL-1 and IL-6. In a mycobacterial-infection AM model, EO pre-treatment or post-treatment significantly enhanced (P ≤0.01) the phagocytic activity and pathogen clearance. 1,8-cineole also significantly enhanced the pathogen clearance though the phagocytic activity was not significantly altered. EO or 1,8-cineole pre-treatment attenuated LPS-induced inflammatory signaling pathways at various levels accompanied by diminished inflammatory response. Among the pattern recognition receptors (PRRs) involved in LPS signaling, the TREM pathway surface receptor (TREM-1) was significantly downregulated. Importantly, the pre-treatments significantly downregulated (P ≤0.01) the intracellular PRR receptor NLRP3 of the inflammasome, which is consistent with the decrease in IL-1β secretion. Of the shared downstream signaling cascade for these PRR pathways, there was significant attenuation of phosphorylation of the transcription factor NF-κB and p38 (but increased phosphorylation of the other two MAP kinases, ERK1/2 and JNK1/2). 1,8-cineole showed a similar general trend except for an opposite effect on NF-κB and JNK1/2. In this context, either pre-treatment caused a significant downregulation of MKP-1 phosphatase, a negative regulator of MAPKs. Collectively, our results demonstrate that the anti-inflammatory activity of EO and 1,8-cineole is modulated via selective downregulation of the PRR pathways, including PRR receptors (TREM-1 and NLRP3) and common downstream signaling cascade partners (NF-κB, MAPKs, MKP-1). To our knowledge, this is the first report on the modulatory role of TREM-1 and NLRP3 inflammasome pathways and the MAPK negative regulator MKP-1 in context of the anti-inflammatory potential of EO and its constituent 1,8-cineole.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Selection of non-cytotoxic concentration of eucalyptus oil (EO) for treatment of alveolar macrophages.
Murine alveolar macrophage cell line MH-S (1×106 cells/well) was cultured in presence of varying concentrations of EO (0.01–0.10%) for 24 hours and cell viability (%) was assessed using Trypan blue staining. Values represent mean ± SEM based on three independent experiments. Asterisks (**) indicate statistically significant (P ≤ 0.01, respectively) difference when compared to the vehicle control.
Fig 2
Fig 2. Modulation of LPS-induced pro-inflammatory response in alveolar macrophage cells by pre-treatment with eucalyptus oil (EO).
MH-S cells (1x106 cells/ml culture/well) were treated with (i) Vehicle (0.1% MeOH), (ii) EO only (0.02% vol/vol), (iii) LPS only (2 μg/ml), and (iv) LPS (2 μg/ml) +EO (0.02%); EO was added 3hours before LPS addition (“pre–treatment”). NO and cytokines were periodically measured in the culture supernatant through 24 hour time-point. Values are presented as mean ± SEM based on three independent treatments. Asterisks (* and **) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference when compared to the positive control (LPS only).
Fig 3
Fig 3. Modulation of LPS-induced pro-inflammatory response in alveolar macrophage cells by pre-treatment with 1,8-cineole (Cin).
MH-S cells (1x106 cells/ml culture/well) were treated with i) vehicle (0.1% MeOH), (ii) Cin only (0.02% vol/vol), (iii) LPS only (2 μg/ml), (iv) LPS (2 μg/ml) +Cin (0.02%); Cin was added 3hours before LPS addition (“pre-treatment”). NO and cytokines were periodically measured in the culture supernatant up to 24 hour time-point. Values are presented as mean ± SEM of based on three independent treatments. Asterisks (*) and (**) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference as compared to the positive control (LPS only).
Fig 4
Fig 4. Effect of eucalyptus oil (EO) and 1,8-cineole on phagocytosis of Mycobacterium smegmatis and its clearance during infection of alveolar macrophages.
Panels A and C: Effect of EO and cineole on phagocytosis activity (1h); Panels B and D: Effect of EO and cineole on bacterial clearance (24 h). MH-S cells (1x10^6 cells/ml culture/well) were treated with EO (0.02% v/v) or cineole either 3h before phagocytosis (“pre-treatment”) or right after phagocytosis (“post-treatment”) during infection with M. smegmatis. Bacterial counting (CFU analysis) was performed on macrophage cell lysates at 1hour (phagocytosis) or 24 hours (pathogen load) post-infection challenge. Values are presented as mean ± SEM based on three independent treatments. Asterisks (*) and (**) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference as compared to the vehicle control.
Fig 5
Fig 5. Modulation of LPS-activation of MAPKs in alveolar macrophages by pre-treatment with eucalyptus oil (EO) or 1,8-cineole (Cin).
(A-D) EO pre-treatment blots; (E-H) Cin pre-treatment blots for p38, SAPK/ JNK, ERK1/2, and NF-kB. MAPKs, respectively. Activation was assessed in terms of increase in both the total content and the phosphorylated form; NF-kB activation was assessed in terms of increase in its phosphorylated form. Densitometry analysis of Western blots was done using NIH software image J. Lanes1-4 represent vehicle control (VC), EO-only, LPS-only and EO+LPS for EO pre-treatment group or VC, Cin, LPS and Cin +LPS for Cin pre-treatment group, respectively. Details on the treatments and antibodies for total- and phospho- MAPKs and β-Actin are described in Materials and Methods section. Values represent means ± SEM based on three independent treatments. Asterisks (*) and (**) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference as compared to the LPS treatments while the number sign (#) indicates statistical significance as compared to the vehicle control. See S1 File for the original Western blot images.
Fig 6
Fig 6. Modulation of LPS-activation of NLRP3 inflammasome in alveolar macrophages by pre-treatment with eucalyptus oil (EO) or 1,8-cineole (Cin).
NLRP3 protein expression was assessed in cell lysates of EO- and Cin- pretreatment groups (3 hours pre-treatment with either EO or Cin at 0.02% concentration followed by induction with 2 μg/ml LPS for 4 hours). Cell lysates were analyzed by Western blotting using anti-NLRP3 antibodies. Densitometry analysis of Western blots was done using NIH software image J. Lanes1-6 represent VC, EO, Cin, LPS, and EO+LPS, Cin +LPS, respectively. Values represent means ± SEM based on three independent treatments. Asterisks (*) and (**) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference as compared to the LPS-only treatment while the number sign (#) indicates statistically significance as compared to the vehicle control. See S1 File for the original Western blot images.
Fig 7
Fig 7. Modulation of mRNA expression of key target genes of LPS-signaling pathway by pre-treatment with eucalyptus oil (EO) and 1,8-cineole.
(A-E) Target genes encoding MKP-1, TREM-1, LBP, TLR4 and CD14, respectively. mRNA expression was analyzed by quantitative RT-PCR using total RNA isolated from different treatment groups, as detailed in Fig 6 legend. The housekeeping gene GAPDH was used as internal control for normalizations and expression difference as fold-change was determined using the formula (2-ΔΔCt) method. Values are presented as mean ± SEM based on three independent treatment groups. Asterisks (*) and (**) indicate statistically significant (P ≤ 0.05 and P ≤ 0.01, respectively) difference as compared to the LPS-only treatment.
Fig 8
Fig 8. Schematic representation of immune-modulatory mode of action of eucalyptus oil and its constituent 1, 8-cineole on different targets of LPS/infection-induced pathways in alveolar macrophage.
Abbreviations: EO, Eucalyptus oil; Cin, 1,8-Cineole; LPS, Lipopolysaccharide; TLR, Toll-like receptor; LBP, LPS-binding protein; CD14, Cluster of differentiation 14; TREM-1, Triggering receptor expressed on myeloid cells 1; IRAKs, IL-1 Receptor-Associated Kinases; TRAF6, TNF receptor-associated factor 6; MAPKs, Mitogen-activated protein kinases; ERK, Extracellular signal–regulated kinases; JNK: c-Jun N-terminal kinases; MKP-1, MAP kinase phosphatase-1; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, Nod-like receptor family pyrin domain containing 3; NO, Nitric oxide: TF, Transcription factor.

Similar articles

Cited by

References

    1. Sarkar S, Mazumder S, Saha SJ, Bandyopadhyay U. Management of inflammation by natural polyphenols: A comprehensive mechanistic update. Curr Med Chem. 2016; 23(16): 1657–1695. - PubMed
    1. Tabutia JRS, Kukundab CB, Waako PJ. Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J Ethnopharmacol. 2010; 127: 130–136. doi: 10.1016/j.jep.2009.09.035 - DOI - PubMed
    1. Tsai ML, Lin CC, Lin WC, Yang CH. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem. 2011; 75(10): 1977–1983. - PubMed
    1. Laird K, Phillips C. Vapor phase: a potential future use for essential oils as antimicrobials. Letters in Appl Microbiol. 2012; 54(3): 169–174. - PubMed
    1. Vuong QV, Chalmers AC, Jyoti Bhuyan D, Bowyer MC, Scarlett CJ. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem Biodivers. 2015; 12(6): 907–924 doi: 10.1002/cbdv.201400327 - DOI - PubMed

MeSH terms