Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 15;12(11):e0187832.
doi: 10.1371/journal.pone.0187832. eCollection 2017.

Molecular and epidemiological characterization of carbapenemase-producing Enterobacteriaceae in Norway, 2007 to 2014

Affiliations

Molecular and epidemiological characterization of carbapenemase-producing Enterobacteriaceae in Norway, 2007 to 2014

Ørjan Samuelsen et al. PLoS One. .

Abstract

The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) is increasing worldwide. Here we present associated patient data and molecular, epidemiological and phenotypic characteristics of all CPE isolates in Norway from 2007 to 2014 confirmed at the Norwegian National Advisory Unit on Detection of Antimicrobial Resistance. All confirmed CPE isolates were characterized pheno- and genotypically, including by whole genome sequencing (WGS). Patient data were reviewed retrospectively. In total 59 CPE isolates were identified from 53 patients. Urine was the dominant clinical sample source (37%) and only 15% of the isolates were obtained from faecal screening. The majority of cases (62%) were directly associated with travel or hospitalization abroad, but both intra-hospital transmission and one inter-hospital outbreak were observed. The number of CPE cases/year was low (2-14 cases/year), but an increasing trend was observed. Klebsiella spp. (n = 38) and E. coli (n = 14) were the dominant species and blaKPC (n = 20), blaNDM (n = 19), blaOXA-48-like (n = 12) and blaVIM (n = 7) were the dominant carbapenemase gene families. The CPE isolates were genetically diverse except for K. pneumoniae where clonal group 258 associated with blaKPC dominated. All isolates were multidrug-resistant and a significant proportion (21%) were resistant to colistin. Interestingly, all blaOXA-48-like, and a large proportion of blaNDM-positive Klebsiella spp. (89%) and E. coli (83%) isolates were susceptible in vitro to mecillinam. Thus, mecillinam could have a role in the treatment of uncomplicated urinary tract infections caused by OXA-48- or NDM-producing E. coli or K. pneumoniae. In conclusion, the impact of CPE in Norway is still limited and mainly associated with travel abroad, reflected in the diversity of clones and carbapenemase genes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: PHE's AMRHAI Reference Unit has received financial support for conference attendance, lectures, research projects or contracted evaluations from numerous sources, including: Accelerate Diagnostics, Achaogen Inc., Allecra Therapeutics, Amplex, AstraZeneca UK Ltd, Basilea Pharmaceutica, Becton Dickinson Diagnostics, bioMérieux, Bio-Rad Laboratories, BSAC, Cepheid, Check-Points B.V., Cubist Pharmaceuticals, Department of Health, Enigma Diagnostics, Food Standards Agency, GlaxoSmithKline Services Ltd, Henry Stewart Talks, IHMA Ltd, Kalidex Pharmaceuticals, Melinta Therapeutics, Merck Sharpe & Dohme Corp., Meiji Seika Pharmo Co., Ltd, Mobidiag, Momentum Biosciences Ltd, Nordic Pharma Ltd, Norgine Pharmaceuticals, Rempex Pharmaceuticals Ltd, Roche, Rokitan Ltd, Smith & Nephew UK Ltd, Trius Therapeutics, VenatoRx Pharmaceuticals and Wockhardt Ltd. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Phylogenetic tree of K. pneumoniae isolates based on alignment of concatenated sequences of the 694 cgMLST scheme of K. pneumoniae [22].
The tree was constructed in RAxML [49] and visualized using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). Clonal groups with >1 isolates are boxed. Sequence type (ST), carbapenemase gene and year of isolation is indicated for each isolate. Isolates associated with the long-term outbreak [50] and the two occurrences of intra-hospital transmission are labelled *, # and ¤, respectively.

References

    1. Tangden T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Int Med. 2015;277(5):501–12. - PubMed
    1. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae: a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–84. doi: 10.1128/AAC.01019-15 - DOI - PMC - PubMed
    1. Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323:22–42. doi: 10.1111/nyas.12537 - DOI - PubMed
    1. Perez F, El Chakhtoura NG, Papp-Wallace KM, Wilson BM, Bonomo RA. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply "precision medicine" to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016;17(6):761–81. doi: 10.1517/14656566.2016.1145658 - DOI - PMC - PubMed
    1. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–43. doi: 10.1093/jac/dkv086 - DOI - PubMed

Publication types

MeSH terms