Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan 30;978(2):241-8.
doi: 10.1016/0005-2736(89)90121-1.

Aminophospholipid translocase in the plasma membrane of Friend erythroleukemic cells can induce an asymmetric topology for phosphatidylserine but not for phosphatidylethanolamine

Affiliations

Aminophospholipid translocase in the plasma membrane of Friend erythroleukemic cells can induce an asymmetric topology for phosphatidylserine but not for phosphatidylethanolamine

E Middelkoop et al. Biochim Biophys Acta. .

Abstract

The ATP-dependent translocation of phospholipids in the plasma membrane of intact Friend erythroleukemic cells (FELCs) was studied in comparison with that in the membrane of mature murine erythrocytes. This was done by following the fate of radiolabeled phospholipid molecules, previously inserted into the outer monolayer of the plasma membranes by using a non-specific lipid transfer protein. The transbilayer equilibration of these probe molecules was monitored by treating the cells--under essentially non-lytic conditions--with phospholipases A2 of different origin. Rapid reorientations of the newly introduced aminophospholipids in favour of the inner membrane leaflet were observed in fresh mouse erythrocytes; the inward translocation of phosphatidylcholine (PC) in this membrane proceeded relatively slow. In FELCs, on the other hand, all three glycerophospholipids equilibrated over both halves of the plasma membrane very rapidly, i.e. within 1 h; nevertheless, an asymmetric distribution in favour of the inner monolayer was only observed for phosphatidylserine (PS). Lowering the ATP-level in the FELCs caused a reduction in the rate of inward translocation of both aminophospholipids, but not of that of PC, indicating that this translocation of PS and phosphatidylethanolamine (PE) is clearly ATP-dependent. Hence, the situation in the plasma membrane of the FELC is rather unique in a sense that, though an ATP-dependent translocase is present and active both for PS and PE, its activity results in an asymmetric distribution of PS, but not of PE. This remarkable situation might be the consequence of the fact that, in contrast to the mature red cell, this precursor cell still lacks a complete membrane skeletal network.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources