Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 Jan 27;990(1):25-30.
doi: 10.1016/s0304-4165(89)80007-8.

Compartmentation of dicarboxylic acid beta-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids

Affiliations
Comparative Study

Compartmentation of dicarboxylic acid beta-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids

H Suzuki et al. Biochim Biophys Acta. .

Abstract

Peroxisomal and mitochondrial beta-oxidation of dicarboxylic acids (DCAs) were investigated and compared. When isolated hepatocytes were incubated with DCAs of various chain lengths, H2O2 was derived from peroxisomal beta-oxidation, the rates of its generation being comparable to those seen with monocarboxylic acids (MCAs), whereas the rates of ketone body production, a measure of mitochondrial beta-oxidation, were much lower than those with MCAs. Peroxisomal beta-oxidation measured by cyanide-insensitive NAD reduction exhibited similar chain-length specificities for both dicarboxylyl-CoAs (DC-CoAs) and monocarboxylyl-CoAs (MC-CoAs), except that the activities for DC-CoAs with 10-16 carbon atoms were about half of those of the corresponding MC-CoAs. In contrast, mitochondrial beta-oxidation measured by antimycin A-sensitive O2 consumption had no activity for DCAs. In the study with purified enzymes, the reactivities of mitochondrial carnitine palmitoyltransferase and acyl-CoA dehydrogenase for DC-CoAs were much lower than those for MC-CoAs, while the reactivity of peroxisomal acyl-CoA oxidase for DC-CoAs was comparable to that for the corresponding MC-CoAs. Accordingly, the properties of carnitine palmitoyltransferase and acyl-CoA dehydrogenase must be the rate-limiting factors for mitochondrial beta-oxidation, with the result that DCAs might hardly be oxidized in mitochondria. Comparative study of beta-oxidation capacities of peroxisomes and mitochondria in the liver showed that DC12-CoA was hardly subjected to mitochondrial beta-oxidation, and that the beta-oxidation of DCAs in rat liver, therefore, must be carried out exclusively in peroxisomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources