Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct;13(Suppl 3):S578-S586.
doi: 10.4103/pm.pm_35_17. Epub 2017 Oct 11.

Marantodes pumilum (Blume) Kuntze Inhibited Secretion of Lipopolysaccharide- and Monosodium Urate Crystal-stimulated Cytokines and Plasma Prostaglandin E2

Affiliations

Marantodes pumilum (Blume) Kuntze Inhibited Secretion of Lipopolysaccharide- and Monosodium Urate Crystal-stimulated Cytokines and Plasma Prostaglandin E2

Eldiza Puji Rahmi et al. Pharmacogn Mag. 2017 Oct.

Abstract

Background: Marantodes pumilum is traditionally used for dysentery, gonorrhea, and sickness in the bones. Previous studies revealed its antibacterial and xanthine oxidase inhibitory activities.

Objective: To evaluate the inhibitory effects of three M. pumilum varieties on the secretion of lipopolysaccharide (LPS)- and monosodium urate crystal (MSU)-induced cytokines and plasma prostaglandin E2 (PGE2) in vitro.

Materials and methods: The leaves and roots of M. pumilum var. alata (MPA), M. pumilum var. pumila (MPP), and M. pumilum var. lanceolata (MPL) were successively extracted with dichloromethane (DCM), methanol, and water. Human peripheral blood mononuclear cells and ELISA technique were used for the cytokine assay, whereas human plasma and radioimmunoassay technique were used in the PGE2 assay. Flavonoids content was determined using a reversed-phase high-performance liquid chromatography.

Results: DCM extract of MPL roots showed the highest inhibition of LPS-stimulated cytokine secretion with IC50 values of 29.87, 7.62, 5.84, 25.33, and 5.40 μg/mL for interleukin (IL)-1α, IL-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α, respectively; while that of plasma PGE2 secretion was given by DCM extract of MPP roots (IC50 31.10 μg/mL). Similarly, the DCM extract of MPL roots demonstrated the highest inhibition against MSU-stimulated IL-1α, IL-1β, IL-6, IL-8, TNF-α, and PGE2 secretion with IC50 values of 11.2, 8.92, 12.29, 49.51, 9.60, and 31.58 μg/mL, respectively. Apigenin in DCM extracts of MPL (0.051 mg/g) and MPP (0.064 mg/g) roots could be responsible for the strong inhibitory activity against IL-1β, IL-6, TNF-α, and PGE2.

Conclusion: The results suggested that DCM extracts of MPL and MPP roots are potential anti-inflammatory agents by inhibiting the secretion of LPS- and MSU-stimulated pro-inflammatory cytokines and PGE2.

Summary: Amongst 18 tested extracts, DCM extracts of MPL and MPP roots remarkably inhibited LPS- and MSU-stimulated pro-inflammatory cytokines and PGE2 secretionPhytochemical analysis was performed for the active extracts using RP-HPLC systemThe presence of flavonoids particularly apigenin could be responsible for the anti-inflammatory activity. Abbreviations used: BSA: Bovine serum albumin, COX-2: Cyclooxygenase-2, CPM: Count per minute, DAMP: Danger-associated molecular pattern, DCM: Dichloromethane, DMSO: Dimethyl sulfoxide, ELISA: Enzyme-linked immunosorbent assay, FBS: Fetal bovine serum, H2O: Water, HEPES: 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, HMC-1: Human mast cell-1, HMGB1: High-mobility group box 1, ICAM: Intercellular adhesion molecule, IFN: Interferon, IgG: Immunoglobulin G, IKK: IkB kinase, IL: Interleukin, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharide, MeOH: Methanol, MPA: Marantodes pumilum var. alata, MPL: Marantodes pumilum var. lanceolata, MPP: Marantodes pumilum var. pumila, MSU: Monosodium urate, MTT: Methylthiazole tetrazolium, NF-κB: Nuclear factor-kappa B, NLR: NOD-like receptor, NLRP3: NLR family pyrin domain containing protein 3, NO: Nitric oxide, NOD: Nucleotide-binding oligomerization domain, NSAID: Nonsteroidal anti-inflammatory drug, PAMP: Pathogen-associated molecular pattern, PBMC: Peripheral blood mononuclear cell, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PMACI: Phorbol-12-myristate 13-acetate and calcium ionosphere A23187, PRR: Pathogen recognition receptor, PTFE: Polytetrafluoroethylene, RIA: Radioimmunoassay, RIG: Retinoic acid-inducible gene I, RLR: RIG I-like receptor, RP-HPLC: Reversed-phase high-performance liquid chromatography, RPMI-1640: Roswell Park Memorial Institute-1640, TLR: Toll-like receptor, TNF: Tumor necrosis factor, VCAM: Vascular cell adhesion molecule.

Keywords: Lipopolysaccharide; Marantodes pumilum; monosodium urate crystals; pro-inflammatory cytokines; prostaglandin E2.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Viability of peripheral blood mononuclear cells after 27 h of exposure to extracts of Marantodes pumilum, dexamethasone, and 0.5% of dimethyl sulfoxide. Data are presented as mean ± standard error of mean (n = 3)
Figure 2
Figure 2
High-performance liquid chromatography chromatograms of (a) a mixture of gallic acid, caffeic acid, myricetin, quercetin, apigenin, and kaempferol standards; (b) dichloromethane extract of Marantodes pumilum var. pumila roots showing peaks corresponding to quercetin (Rt 27.997 min) and apigenin (Rt 31.354 min); and (c) dichloromethane extract of Marantodes pumilum var. lanceolata roots showing a peak corresponding to apigenin (Rt 31.065 min)

Similar articles

Cited by

References

    1. Ward PA. Acute and chronic inflammation. In: Serhan CN, Ward PA, Gilroy DW, editors. Fundamentals of Inflammation. New York: Cambridge University Press; 2010. pp. 1–16.
    1. Lindell DM, Lukacs NW. Cytokines and chemokines in inflammation. In: Serhan CN, Ward PA, Gilroy DW, editors. Fundamentals of Inflammation. New York: Cambridge University Press; 2010. pp. 175–85.
    1. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–7. - PubMed
    1. Lakshmi R, Jayavardhanan KK. The role of toll like receptors in innate immunity. World J Pharm Res. 2015;4:667–84.
    1. Murphy HS. Inflammation. In: Rubin E, Reisner HM, editors. Essential of Rubin's Pathology. 6th ed. Philadelphia: Wolter Kluwer Health/Lippincott Williams & Wilkins; 2013. pp. 25–34.