Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 1;6(9):5164-5171.
doi: 10.1039/c5sc01909e. Epub 2015 Jun 17.

Enantioselective palladium(0)-catalyzed intramolecular cyclopropane functionalization: access to dihydroquinolones, dihydroisoquinolones and the BMS-791325 ring system

Affiliations

Enantioselective palladium(0)-catalyzed intramolecular cyclopropane functionalization: access to dihydroquinolones, dihydroisoquinolones and the BMS-791325 ring system

J Pedroni et al. Chem Sci. .

Abstract

Taddol-based phosphoramidite ligands enable enantioselective palladium(0)-catalyzed C-H arylation of cyclopropanes. The cyclized products are obtained in high yields and enantioselectivities. The reported method provides efficient access to a broad range of synthetically attractive cyclopropyl containing dihydroquinolones and dihydroisoquinolones as well as allows for an efficient enantioselective construction of the 7-membered ring of the cyclopropyl indolobenzazepine core of BMS-791325.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Marketed drugs and development candidates having an annulated cyclopropyl ring system.
Scheme 1
Scheme 1. Rapid enantioselective assembly of dihydroquinolones and dihydroisoquinolones by Pd0-catalyzed C–H functionalization.
Scheme 2
Scheme 2. Enantioselective dihydroquinolone synthesis.
Scheme 3
Scheme 3. Scope of the enantioselective cyclopropanecarboxamide cyclization. Reaction conditions: 1 (0.10 mmol), Cs2CO3 (0.15 mmol), Pd(dba)2 (2.00 μmol), L2 (4.00 μmol), PivOH (30 μmol), 0.30 M in mesitylene at 130 °C for 12 h. Yields of isolated products 2; er's determined by HPLC with a chiral stationary phase. a [(η3-cinnamyl)Pd(Cp)] instead of Pd(dba)2. b With Cs2CO3 (0.20 mmol), Pd(dba)2 (10.0 μmol), L2 (20.0 μmol), PivOH (50 μmol).
Scheme 4
Scheme 4. Cyclopropane C(sp3)–H activation over arene C(sp2)–H activation in 1f. Conditions: 2.0 mol% [(η3-cinnamyl)Pd(Cp)], 4.0 mol% L2, 0.3 equiv. PivOH (30 μmol), 1.5 equiv. Cs2CO3, mesitylene, 130 °C, 12 h.
Scheme 5
Scheme 5. Enantioselective double C–H arylation process.
Scheme 6
Scheme 6. PMB group cleavage and determination of the absolute configuration.
Scheme 7
Scheme 7. Reports on cyclopropane ring-opening under Pd0/PdII catalysis.
Scheme 8
Scheme 8. Scope of the enantioselective aminocyclopropane cyclization. Reaction conditions: 3 (0.10 mmol), Cs2CO3 (0.15 mmol), Pd(dba)2 (2.50 μmol), L2 (5.00 μmol), AdCO2H (20.0 μmol), 0.25 M in toluene at 110 °C for 12 h. Yields of isolated products 4; er's determined by HPLC with a chiral stationary phase. a With Pd(dba)2 (5.00 μmol) and L2 (10.0 μmol) for 12 h. b 24 h reaction. c With Pd(dba)2 (5.00 μmol) and L2 (10.0 μmol) in mesitylene at 130 °C for 12 h. d 1.0 mmol scale.
Scheme 9
Scheme 9. Removal of the PMB group and X-ray crystal structure of product 4q.
Scheme 10
Scheme 10. A consecutive C–H activation strategy for BMS-791325.
Scheme 11
Scheme 11. Enantioselective synthesis of the BMS-791325 ring system.

References

    1. de Meijere A., Kozhushkov S. I., Schill H. Chem. Rev. 2006;106:4926. - PubMed
    2. Gnad F., Reiser O. Chem. Rev. 2003;103:1603. - PubMed
    1. Gootz T. D., Zaniewski R., Haskell S., Schmieder B., Tankovic J., Girard D., Courvalin P., Polzer R. J. Antimicrob. Agents Chemother. 2006;40:2691. - PMC - PubMed
    2. Augeri D. J., Robl J. A., Betebenner D. A., Magnin D. R., Khanna A., Robertson J. G., Wang A., Simpkins L. M., Taunk P., Huang Q., Han S.-P., Abboa-Offei B., Cap M., Xin L., Tao L., Tozzo E., Welzel G. E., Egan D. M., Marcinkeviciene J., Chang S. Y., Biller S. A., Kirby M. S., Parker R. A., Hamann L. G. J. Med. Chem. 2005;48:5025. - PubMed
    3. Micheli F., Cavanni P., Andreotti D., Arban R., Benedetti R., Bertani B., Bettati M., Bettelini L., Bonanomi G., Braggio S., Carletti R., Checchia A., Corsi M., Fazzolari E., Fontana S., Marchioro C., Merlo-Pich E., Negri M., Oliosi B., Ratti E., Read K. D., Roscic M., Sartori I., Spada S., Tedesco G., Tarsi L., Terreni S., Visentini F., Zocchi A., Zonzini L. J. Med. Chem. 2000;53:4989. - PubMed
    4. Krattenmacher R. Contraception. 2000;62:29. - PubMed
    5. Lin T. I., Lenz O., Fanning G., Verbinnen T., Delouvroy F., Scholliers A., Vermeiren K., Rosenquist A., Edlund M., Samuelsson B., Vrang L., De Kock H., Wigerinck P., Raboisson P., Simmen K. Antimicrob. Agents Chemother. 2009;53:1377. - PMC - PubMed
    6. Gentles R. G., Ding M., Bender J. A., Bergstrom C. P., Grant-Young K., Hewawasam P., Hudyma T., Martin S., Nickel A., Regueiro-Ren A., Tu Y., Yang Z., Yeung K.-S., Zheng X., Chao S., Sun J.-H., Beno B. R., Camac D. M., Chang C.-H., Gao M., Morin P. E., Sheriff S., Tredup J., Wan J., Witmer M. R., Xie D., Hanumegowda U., Knipe J., Mosure K., Santone K. S., Parker D. D., Zhuo X., Lemm J., Liu M., Pelosi L., Rigat K., Voss S., Wang Y., Wang Y.-K., Colonno R. J., Gao M., Roberts S. B., Gao Q., Ng A., Meanwell N. A., Kadow J. F. J. Med. Chem. 2014;57:1855. - PubMed
    1. Lebel H., Marcoux J.-F., Molinaro C., Charette A. B. Chem. Rev. 2003;103:977. - PubMed
    2. Pellissier H. Tetrahedron. 2008;64:7041.
    1. Eaton P. E., Lee C.-H., Xiong Y. J. Am. Chem. Soc. 1989;111:8016.
    2. Zhang M.-X., Eaton P. E. Angew. Chem., Int. Ed. 2002;41:2169. - PubMed
    1. Lauru S., Simpkins N. S., Gethin D., Wilson C. Chem. Commun. 2008:5390. - PubMed

LinkOut - more resources