Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 14;17(Suppl 1):172.
doi: 10.1186/s12870-017-1126-z.

Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

Affiliations

Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

Antonina A Kiseleva et al. BMC Plant Biol. .

Abstract

Background: Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number.

Results: In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w".

Conclusions: We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements.

Keywords: Common wheat; Flowering time; Photoperiod sensitivity; Phytochrome; Ppd-B1.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Scheme of the Ppd-B1 gene features. Distances are presented in base pairs from the TSS (transcription start site). Black rectangles indicate exons. CS means Chinese Spring cultivar. Numbers on the right side of some sequences indicate number of gene copies in actual alleles
Fig. 2
Fig. 2
Patterns of the diurnal gene expression. Quantitative gene expression data from plants grown in short days (0–9 h light period) in а climatic chamber. Gray shadowing indicates the dark period (9–24 h). The graphs compare the expression between the photoperiod sensitive parental line PSL2 (red) and the photoperiod insensitive NILs (“Ppd-m” (green), “Ppd-w” (purple)) and parent Sonora (blue). Values are expressed as the relative levels normalized against 18S ribosomal RNA. Error bars indicate the SE of the means. Asterisks indicate significant (P < 0.05) differences in a one-way ANOVA with a post hoc Tukey test comparing the photoperiod insensitive NILs (“Ppd-m”, “Ppd-w”) and the parent Sonora with the photoperiod sensitive parental line PSL2 in each time point
Fig. 3
Fig. 3
5B chromosome genotyping of NILs. Genotypes of the 5B chromosome of the near-isogenic “Ppd-m” and “Ppd-0m”, “Ppd-w” and “Ppd-0w” lines with introgressed chromosome regions of the Sonora variety (white color) into the genetic background of the recipient PSL2 parent (gray color). C indicates centromere region
Fig. 4
Fig. 4
Patterns of the FHY3/FAR1 diurnal expression. Quantitative gene expression data from plants grown in short days (0–9 h light period) in а climatic chamber. Gray shadowing indicates the dark period (9–24 h). The graphs compare the expression between the photoperiod insensitive NILs “Ppd-m” (green), “Ppd-w” (purple). Values are expressed as the relative levels normalized against 18S ribosomal RNA. Error bars indicate the SE of the means. Asterisks indicate significant (P < 0.05) differences in a one-way ANOVA with a post hoc Tukey test comparing the “Ppd-m” and “Ppd-w” in each time point
Fig. 5
Fig. 5
Groups of transcription factor binding sites that are common in the Ppd-1 genes. Vertical dotted lines indicate the borders of a 900-bp region that is commonly deleted in the Ppd-A1 and Ppd-D1 photoperiod insensitive alleles [4, 7]. TSS indicates Transcription Start Site; the distances are presented in base pairs
Fig. 6
Fig. 6
Groups of transcription factor binding sites that are specific to Ppd-B1. TSS indicates Transcription Start Site; the distances are presented in base pairs. Different colors designate different TFBSs or TFBSs with unknown TF

Similar articles

Cited by

References

    1. Beales J, Turner A, Griffiths S, Snape JW, Laurie DAA. Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) Theor Appl Genet. 2007;115:721–733. doi: 10.1007/s00122-007-0603-4. - DOI - PubMed
    1. Law CN, Sutka J, Worland AJA. Genetic study of day-length response in wheat. Heredity (Edinb). 1978;41:185–191. doi: 10.1038/hdy.1978.87. - DOI
    1. Scarth R, Law CN. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat. Heredity (Edinb) 1983;51:607–619. doi: 10.1038/hdy.1983.73. - DOI
    1. Wilhelm EP, Turner AS, Laurie DA. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.) Theor Appl Genet. 2009;118:285–294. doi: 10.1007/s00122-008-0898-9. - DOI - PubMed
    1. Worland T, Snape JW. Genetic basis of worldwide wheat varietal improvement. In: William A, Alain B, Maarten G, editors. World wheat book, a history of wheat breeding. Paris: Lavoisier Publishing; 2001. pp. 61–67.

LinkOut - more resources