Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 7;17(Suppl 4):784.
doi: 10.1186/s12889-017-4742-5.

Modelling stillbirth mortality reduction with the Lives Saved Tool

Affiliations

Modelling stillbirth mortality reduction with the Lives Saved Tool

Hannah Blencowe et al. BMC Public Health. .

Abstract

Background: The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries set policy and plan investment to scale up interventions to meet this target. This paper summarises the approach taken for modelling the impact of scaling-up health interventions on stillbirths in the Lives Saved tool (LiST), and potential future refinements.

Methods: The specific application to stillbirths of the general method for modelling the impact of interventions in LiST is described. The evidence for the effectiveness of potential interventions to reduce stillbirths are reviewed and the assumptions of the affected fraction of stillbirths who could potentially benefit from these interventions are presented. The current assumptions and their effects on stillbirth reduction are described and potential future improvements discussed.

Results: High quality evidence are not available for all parameters in the LiST stillbirth model. Cause-specific mortality data is not available for stillbirths, therefore stillbirths are modelled in LiST using an attributable fraction approach by timing of stillbirths (antepartum/ intrapartum). Of 35 potential interventions to reduce stillbirths identified, eight interventions are currently modelled in LiST. These include childbirth care, induction for prolonged pregnancy, multiple micronutrient and balanced energy supplementation, malaria prevention and detection and management of hypertensive disorders of pregnancy, diabetes and syphilis. For three of the interventions, childbirth care, detection and management of hypertensive disorders of pregnancy, and diabetes the estimate of effectiveness is based on expert opinion through a Delphi process. Only for malaria is coverage information available, with coverage estimated using expert opinion for all other interventions. Going forward, potential improvements identified include improving of effectiveness and coverage estimates for included interventions and addition of further interventions.

Conclusions: Known effective interventions have the potential to reduce stillbirths and can be modelled using the LiST tool. Data for stillbirths are improving. Going forward the LiST tool should seek, where possible, to incorporate these improving data, and to continually be refined to provide an increasingly reliable tool for policy and programming purposes.

Keywords: Lives saved tool; Mortality modelling; Stillbirths.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

N/A.

Consent for publication

N/A.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Overview of modelling approach for stillbirths in the Lives Saved Tool
Fig. 2
Fig. 2
Conceptual framework for known pathways to stillbirth. *This conceptual framework focuses on known conditions in pregnancy associated with stillbirth and understood pathways to stillbirth which are potentially amenable to interventions. The underlying causes and factors in many stillbirths remain unknown, this framework should be revised as further evidence becomes available
Fig. 3
Fig. 3
Interventions included in Lives Saved Tool model which impact on stillbirths by timing (antepartum/ intrapartum). This schema represents the LiST modelling of stillbirths as of September 2016

Similar articles

Cited by

References

    1. Lawn JE, Blencowe H, Waiswa P, Amouzou A, Mathers C, Hogan D, et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet (London, England) 2016;387(10018):587–603. doi: 10.1016/S0140-6736(15)00837-5. - DOI - PubMed
    1. Flenady V, Wojcieszek AM, Middleton P, Ellwood D, Erwich JJ, Coory M, et al. Stillbirths: recall to action in high-income countries. Lancet. 2016;387(10019):691–702. doi: 10.1016/S0140-6736(15)01020-X. - DOI - PubMed
    1. Graham WJ, Woodd S, Byass P, Filippi V, Gon G, Virgo S, et al. Diversity and divergence: the dynamic burden of poor maternal health. Lancet. 2016;388(10056):2164–2175. doi: 10.1016/S0140-6736(16)31533-1. - DOI - PubMed
    1. de Bernis L, Kinney MV, Stones W, Ten Hoope-Bender P, Vivio D, Leisher SH, et al. Stillbirths: ending preventable deaths by 2030. Lancet. 2016;387(10019):703–716. doi: 10.1016/S0140-6736(15)00954-X. - DOI - PubMed
    1. Froen JF, Friberg IK, Lawn JE, Bhutta ZA, Pattinson RC, Allanson ER, et al. Stillbirths: progress and unfinished business. Lancet. 2016;387(10018):574–586. doi: 10.1016/S0140-6736(15)00818-1. - DOI - PubMed