Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb 15;264(5):2609-14.

Affinity of single- or double-stranded oligodeoxyribonucleotides containing a thymine photodimer for T4 endonuclease V

Affiliations
  • PMID: 2914925
Free article

Affinity of single- or double-stranded oligodeoxyribonucleotides containing a thymine photodimer for T4 endonuclease V

T Inaoka et al. J Biol Chem. .
Free article

Abstract

A gene for T4 endonuclease V was constructed by joining chemically synthesized oligodeoxyribonucleotides and expressed efficiently in Escherichia coli under the control of the E. coli tryptophan promoter. Overproduced T4 endonuclease V, which can cleave thymine photodimers as well as the corresponding phosphodiester linkage of DNA, was used to investigate the precise mode of the reaction with single- or double-stranded synthetic DNA fragments containing a thymine photodimer. The substrates, three oligodeoxyribonucleotides, d(GCGGTTGGCG) (10-mer), d(CGAAGGTTGGAAGC) (14-mer), and d(CACGAAGGTTGGAAGCAC) (18-mer), were prepared by UV irradiation of the nascent oligonucleotides. These single-stranded oligonucleotides were cleaved by the enzyme with a concentration 100 times higher than that required for the corresponding duplexes. The Km values for the TT duplex (14- and 18-mer) were found to be on the order of 10(-8) M. Dissociation constants for the 14- and 18-mer duplexes were measured by a binding assay on a nitrocellulose filter and found to be 10(-9).

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources