Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Dec;100(12):9933-9951.
doi: 10.3168/jds.2017-12969.

A 100-Year Review: Microbiology and safety of milk handling

Affiliations
Review

A 100-Year Review: Microbiology and safety of milk handling

Kathryn J Boor et al. J Dairy Sci. 2017 Dec.

Abstract

Microbes that may be present in milk can include pathogens, spoilage organisms, organisms that may be conditionally beneficial (e.g., lactic acid bacteria), and those that have not been linked to either beneficial or detrimental effects on product quality or human health. Although milk can contain a full range of organisms classified as microbes (i.e., bacteria, viruses, fungi, and protozoans), with few exceptions (e.g., phages that affect fermentations, fungal spoilage organisms, and, to a lesser extent, the protozoan pathogens Cryptosporidium and Giardia) dairy microbiology to date has focused predominantly on bacteria. Between 1917 and 2017, our understanding of the microbes present in milk and the tools available for studying those microbes have changed dramatically. Improved microbiological tools have enabled enhanced detection of known microbes in milk and dairy products and have facilitated better identification of pathogens and spoilage organisms that were not known or well recognized in the early 20th century. Starting before 1917, gradual introduction and refinement of pasteurization methods throughout the United States and many other parts of the world have improved the safety and quality of milk and dairy products. In parallel to pasteurization, others strategies for reducing microbial contamination throughout the dairy chain (e.g., improved dairy herd health, raw milk tests, clean-in-place technologies) also played an important role in improving microbial milk quality and safety. Despite tremendous advances in reducing microbial food safety hazards and spoilage issues, the dairy industry still faces important challenges, including but not limited to the need for improved science-based strategies for safety of raw milk cheeses, control of postprocessing contamination, and control of sporeforming pathogens and spoilage organisms.

Keywords: cheese safety; dairy food safety; pasteurization.

PubMed Disclaimer