Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 6;27(2):299-313.
doi: 10.1016/j.cmet.2017.10.009. Epub 2017 Nov 16.

AMPK: Sensing Glucose as well as Cellular Energy Status

Affiliations
Free article
Review

AMPK: Sensing Glucose as well as Cellular Energy Status

Sheng-Cai Lin et al. Cell Metab. .
Free article

Abstract

Mammalian AMPK is known to be activated by falling cellular energy status, signaled by rising AMP/ATP and ADP/ATP ratios. We review recent information about how this occurs but also discuss new studies suggesting that AMPK is able to sense glucose availability independently of changes in adenine nucleotides. The glycolytic intermediate fructose-1,6-bisphosphate (FBP) is sensed by aldolase, which binds to the v-ATPase on the lysosomal surface. In the absence of FBP, interactions between aldolase and the v-ATPase are altered, allowing formation of an AXIN-based AMPK-activation complex containing the v-ATPase, Ragulator, AXIN, LKB1, and AMPK, causing increased Thr172 phosphorylation and AMPK activation. This nutrient-sensing mechanism activates AMPK but also primes it for further activation if cellular energy status subsequently falls. Glucose sensing at the lysosome, in which AMPK and other components of the activation complex act antagonistically with another key nutrient sensor, mTORC1, may have been one of the ancestral roles of AMPK.

Keywords: AMP-activated protein kinase; AMPK; energy sensing; glucose sensing; nutrient sensing; origin of eukaryotes.

PubMed Disclaimer

Publication types

LinkOut - more resources