Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 13;65(49):10812-10819.
doi: 10.1021/acs.jafc.7b04451. Epub 2017 Nov 29.

Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate

Affiliations

Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate

Yuting Fan et al. J Agric Food Chem. .

Abstract

A chitosan (CS)-chlorogenic acid (CA) conjugate was successfully prepared through free-radical-induced protocols with a substitution of CA on CS of 103.5 mg/g. ATR-FTIR and 1H NMR results validated the covalent conjugation of CA onto CS. XRD results indicated the decrease of crystallinity after CA conjugation. DPPH-scavenging activity and reducing-power studies indicated that the CS-CA conjugate had stronger antioxidant activity than chitosan. The particle diameters of curcumin-loaded CS and CS-CA nanoparticles simultaneously formed by ionic gelling in the presence of tripolyphosphate (TPP) were less than 300 nm (243.6 and 256.5 nm, respectively), and zeta-potential values between 25 and 30 mV were obtained. TEM results showed that the nanoparticles were spherically shaped and homogeneously dispersed. Curcumin with the CS-CA conjugate showed better heat stability than with CA at both temperatures (25 and 95 °C) (p <0.05). Curcumin release was inhibited by the CS-CA conjugate. The total release amount of curcumin from CS and CS-CA-conjugate nanoparticles were 70.5 and 61.7%, respectively (p <0.05). A methyl thiazolyl tetrazolium (MTT) assay showed that the antiproliferative activity of curcumin in CS-CA nanoparticles was remarkably higher than that in CS nanoparticles because of the higher chemical stability. The results suggest that CS-CA-based nanoparticles are promising candidates for the encapsulation and controlled release of hydrophobic, bioactive compounds and can improve these compounds' chemical stabilities and anticancer activities.

Keywords: antiproliferative activity; chitosan; curcumin; nanoparticle; stability.

PubMed Disclaimer

MeSH terms