Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 21;10(1):579.
doi: 10.1186/s13071-017-2522-9.

Immunoproteomic analysis of the excretory-secretory products of Trichinella pseudospiralis adult worms and newborn larvae

Affiliations

Immunoproteomic analysis of the excretory-secretory products of Trichinella pseudospiralis adult worms and newborn larvae

Yang Wang et al. Parasit Vectors. .

Abstract

Background: The nematode Trichinella pseudospiralis is an intracellular parasite of mammalian skeletal muscle cells and exists in a non-encapsulated form. Previous studies demonstrated that T. pseudospiralis could induce a lower host inflammatory response. Excretory-secretory (ES) proteins as the most important products of host-parasite interaction may play the main functional role in alleviating host inflammation. However, the ES products of T. pseudospiralis early stage are still unknown. The identification of the ES products of the early stage facilitates the understanding of the molecular mechanisms of the immunomodulation and may help finding early diagnostic markers.

Results: In this study, we used two-dimensional gel electrophoresis (2-DE)-based western blotting coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS/MS) to separate and identify the T. pseudospiralis adult worms ES products immunoreaction-positive proteins. In total, 400 protein spots were separated by 2-DE. Twenty-eight protein spots were successfully identified using the sera from infected pigs and were characterized to correlate with 12 different proteins of T. pseudospiralis, including adult-specific DNase II-10, poly-cysteine and histidine-tailed protein isoform 2, serine protease, serine/threonine-protein kinase ULK3, enolase, putative venom allergen 5, chymotrypsin-like elastase family member 1, uncharacterized protein, peptidase inhibitor 16, death-associated protein 1, deoxyribonuclease II superfamily and golgin-45. Bioinformatic analyses showed that the identified proteins have a wide diversity of molecular functions, especially deoxyribonuclease II (DNase II) activity and serine-type endopeptidase activity.

Conclusions: Early candidate antigens from the ES proteins of T. pseudospiralis have been screened and identified. Our results suggest these proteins may play key roles during the T. pseudospiralis infection and suppress the host immune response. Further, they are the most likely antigen for early diagnosis and the development of a vaccine against the parasite.

Keywords: Excretory-secretory proteins; Immunoproteomics; Trichinella pseudospiralis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

The study of using laboratory animals was reviewed and approved by the Ethical Committee of Jilin University affiliated to the Provincial Animal Health Committee, Jilin Province, China (Ethical Clearance number IZ-2009-008). All experiments were performed in strict accordance with the requirements of the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Typical two-dimensional electrophoresis (2-DE) gel of Trichinella pseudospiralis adult worms excretory-secretory proteins separated in the first dimension in the pH range 4–7 and then in the second dimension on a 12% non-linear gradient polyacrylamide gel. The 2-DE gel was stained with coomassie brilliant blue G-250. Peptide spots selected for analysis are numbered. b Western blot of adult worms excretory-secretory proteins probed with pig infection sera at 26 days post-infection. Peptide spots selected for analysis are numbered. c Western blot of adult worms excretory-secretory probed with normal pig sera
Fig. 2
Fig. 2
Gene ontology categories of proteins of adult worms excretory-secretory of Trichinella pseudospiralis. The identified proteins were classified into molecular function (a) and biological process (b) by Quick GO according to their gene oncology signatures

References

    1. Dupouy-Camet J. Presidential address of ICT12 conference: "Trichinella and trichinellosis - a never ending story". Vet Parasitol. 2009;159(3–4):194–6. - PubMed
    1. Pozio E, Hoberg E, La Rosa G, Zarlenga DS. Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect Genet Evol. 2009;9(4):606–616. doi: 10.1016/j.meegid.2009.03.003. - DOI - PubMed
    1. Dupouy-Camet J. Trichinellosis: still a concern for Europe. Euro Surveill. 2006;11(1):5. doi: 10.2807/esm.11.01.00590-en. - DOI - PubMed
    1. Pozio E, Zarlenga DS. New pieces of the Trichinella puzzle. Int J Parasitol. 2013;43(12–13):983–997. doi: 10.1016/j.ijpara.2013.05.010. - DOI - PubMed
    1. Li CK, Chung YY, Ko RC. The distribution of excretory/secretory antigens during the muscle phase of Trichinella spiralis and T. pseudospiralis infections. Parasitol Res. 1999;85(12):993–998. doi: 10.1007/s004360050671. - DOI - PubMed

LinkOut - more resources