DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle
- PMID: 29162844
- PMCID: PMC5698298
- DOI: 10.1038/s41467-017-01891-9
DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle
Abstract
Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
References
-
- Anantharaman, T. S., Mysore, V. & Mishra, B. Fast and cheap genome wide haplotype construction via optical mapping. Pac. Symp. Biocomput.10, 385–396 (2005). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
