Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 27:8:1855.
doi: 10.3389/fpls.2017.01855. eCollection 2017.

Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family

Affiliations

Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family

Yaxin Li et al. Front Plant Sci. .

Abstract

The functions of SWEET (Sugar Will Eventually be Exported Transporter) proteins have been studied in a number of crops, but little is known about their roles in cucumber (Cucumis sativus L.), a model plant for studying stachyose metabolism and phloem function. Here, we identified 17 cucumber SWEET genes (CsSWEETs), located on chromosomes 1-6, and classified them into four clades. Two genes from each clade were selected for spatiotemporal expression, subcellular localization, and substrate specificity analyses. Clade I and II proteins were all hexose transporters and targeted to the plasma membrane, while clade III proteins also localized to the plasma membrane, but used sucrose as a substrate. Clade IV SWEET proteins were localized to the tonoplast, and used hexose as a substrate. The eight tested CsSWEET genes were most highly expressed in flower, which represents a large sink in plants. However, each gene also showed specific expression patterns: three of the eight tested genes were highly expressed in mature leaves, two in roots, two in fruit, two in stems, and one was detected in all tested organs. The likely biological roles of each are discussed based on the above results.

Keywords: SWEET transporters; cucumber; phylogeny; spatiotemporal expression; subcellular localization; substrate specificity; sugar.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Phylogenetic tree of cucumber (Cucumis sativus), Arabidopsis thaliana, and tomato (Solanum lycopersicum) SWEET proteins. AtSWEET is A. thaliana (yellow), CsSWEET is Cucumis sativus (red), and SlSWEET is Solanum lycopersicum (green). The evolutionary history was inferred using the neighbor joining method with 1,000 replicates. The evolutionary distances were computed using the Poisson correction distance model and are in the units of the number of amino acid substitutions per site. Evolutionary analyses were conducted using MEGA5.0 software. Accessions are listed in Supplementary Table S2.
FIGURE 2
FIGURE 2
The transmembrance domains of CsSWEET proteins. The position of N- and C-terminal domains of the protein are indicated by blue or pink lines. Table on the right bottom shows the location of each protein in this figure. The website used for predictions was TMHMM.
FIGURE 3
FIGURE 3
Heterologous expression of eight CsSWEET genes in yeast. Yeast strains with recombinant vectors or the empty pDR196 vector (as a negative control) were grown on SD (synthetic deficient)-ura medium supplemented with 2% maltose or different sugars (listed above) as the sole carbon source for 5 days. Medium with maltose as sole carbon source is a positive control for strain EBY.WV4000, while with glucose as sole carbon source is a positive control for strain SUSY7/ura. Yeast cell suspensions were diluted (×10, ×102, ×103) for serial dilutions assay. The other results of the experiment are in Supplementary Figure S2.
FIGURE 4
FIGURE 4
The expression patterns of eight CsSWEET genes. (A–H) Relative expression of CsSWEETs. R, root; S, stem; YL, young leaf; ML, mature leaf; MF, male flower; FF, female flower; 0DAA, ovary/fruit on the day of anthesis, 9DAA, fruit on the ninth day after anthesis. (I) Schematic model of the areas of CsSWEET gene expression in cucumber. Letters in (I) match the expression pattern in (A–H). Error bars represent the SE for three technical replicates of three biological replicates.
FIGURE 5
FIGURE 5
The subcellular localization of CsSWEET1, -7b, -12c, -17a green fluorescent protein (GFP) fusions in A. thaliana protoplasts. The white arrows indicate the tonoplast. Scale bars = 10 μm.

Similar articles

Cited by

References

    1. Antony G., Zhou J., Huang S., Li T., Liu B., White F., et al. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22 3864–3876. 10.1105/tpc.110.078964 - DOI - PMC - PubMed
    1. Chardon F., Bedu M., Calenge F., Klemens P. A. W., Spinner L., Clement G., et al. (2013). Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr. Biol. 23 697–702. 10.1016/j.cub.2013.03.021 - DOI - PubMed
    1. Chen L., Hou B., Lalonde S., Takanaga H., Hartung M. L., Qu X., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468 527–532. 10.1038/nature09606 - DOI - PMC - PubMed
    1. Chen L. Q. (2014). SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201 1150–1155. 10.1111/nph.12445 - DOI - PubMed
    1. Chen L. Q., Cheung L. S., Feng L., Tanner W., Frommer W. B. (2015a). Transport of Sugars. Annu. Rev. Biochem. 84 865–894. 10.1146/annurev-biochem-060614-033904 - DOI - PubMed

LinkOut - more resources