Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 31:8:167.
doi: 10.3389/fgene.2017.00167. eCollection 2017.

Departure from Hardy Weinberg Equilibrium and Genotyping Error

Affiliations

Departure from Hardy Weinberg Equilibrium and Genotyping Error

Bowang Chen et al. Front Genet. .

Abstract

Objective: Departure from Hardy Weinberg Equilibrium (HWE) may occur due to a variety of causes, including purifying selection, inbreeding, population substructure, copy number variation or genotyping error. We searched for specific characteristics of HWE-departure due to genotyping error. Methods: Genotypes of a random set of genetic variants were obtained from the Exome Aggregation Consortium (ExAC) database. Variants with <80% successful genotypes or with minor allele frequency (MAF) <1% were excluded. HWE-departure (d-HWE) was considered significant at p < 10E-05 and classified as d-HWE with loss of heterozygosity (LoH d-HWE) or d-HWE with excess heterozygosity (gain of heterozygosity: GoH d-HWE). Missing genotypes, variant type (single nucleotide polymorphism (SNP) vs. insertion/deletion); MAF, standard deviation (SD) of MAF across populations (MAF-SD) and copy number variation were evaluated for association with HWE-departure. Results: The study sample comprised 3,204 genotype distributions. HWE-departure was observed in 134 variants: LoH d-HWE in 41 (1.3%), GoH d-HWE in 93 (2.9%) variants. LoH d-HWE was more likely in variants located within deletion polymorphisms (p < 0.001) and in variants with higher MAF-SD (p = 0.0077). GoH d-HWE was associated with low genotyping rate, with variants of insertion/deletion type and with high MAF (all at p < 0.001). In a sub-sample of 2,196 variants with genotyping rate >98%, LoH d-HWE was found in 29 (1.3%) variants, but no GoH d-HWE was detected. The findings of the non-random distribution of HWE-violating SNPs along the chromosome, the association with common deletion polymorphisms and indel-variant type, and the finding of excess heterozygotes in genomic regions that are prone to cross-hybridization were confirmed in a large sample of short variants from the 1,000 Genomes Project. Conclusions: We differentiated between two types of HWE-departure. GoH d-HWE was suggestive for genotyping error. LoH d-HWE, on the contrary, pointed to natural variabilities such as population substructure or common deletion polymorphisms.

Keywords: Hardy Weinberg Equilibrium (HWE); SNP quality control; association studies in genetics; heterozygosity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Analysis of genotyped short variations in genomic region 17:56,000,000–64,000,000 (A,B) and genomic region 3:65,000,000–65,500,000 (C,D) from the 1000 Genomes Project, European Population. Upper figures (A,C) show log-transformed p-values for departures from HWE. Lower figures (B,D) show ratios of observed and expected (i.e., under Hardy-Weinberg Equilibrium) frequencies of heterozygous genotypes. Dots indicate true SNPs, rectangles symbolize variants of indel type. The bar (seen in C,D) indicates common deletion variant esv2657253, (http://www.ensembl.org/Homo_sapiens/StructuralVariation/Explore?r=3:65202694--65229573;sv,esv2657253;svf,3513219;vdb,variation). The arrow (seen in A,B) points to a region with of a degenerate repeat structure within the 5' end of the LRRC37A2 with strong homology with sequences of the LRRC37A3 gene, resulting in genotyping error.

References

    1. 1000 Genomes Project Consortium. Auton A., Brooks L. D., Durbin R. M., Garrison E. P., Kang H. M., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393 - DOI - PMC - PubMed
    1. Attia J., Thakkinstian A., McElduff P., Milne E., Dawson S., Scott R. J., et al. (2010). Detecting genotyping error using measures of degree of Hardy-Weinberg disequilibrium. Stat. Appl. Genet. Mol. Biol. 9:5. 10.2202/1544-6115.1463 - DOI - PubMed
    1. Gazal S., Sahbatou M., Babron M. C., Génin E., Leutenegger A., et al. (2015). High level of inbreeding in final phase of 1000 Genomes Project. Sci. Rep. 5:17453. 10.1038/srep17453 - DOI - PMC - PubMed
    1. Gordon D., Ott J. (2001). Assessment and management of single nucleotide polymorphism genotype errors in genetic association analysis. Pac. Symp. Biocomput. 2001, 18–29. - PubMed
    1. Graffelman J., Jain D., Weir B. (2017). A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data. Hum. Genet. 136, 727–741. 10.1007/s00439-017-1786-7 - DOI - PMC - PubMed

LinkOut - more resources