Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 1;8(11):7476-7482.
doi: 10.1039/c7sc00891k. Epub 2017 Sep 7.

Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide

Affiliations

Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide

Chengxia Miao et al. Chem Sci. .

Abstract

The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R- and S-enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. (A) Schematic structures of manganese complexes bearing N4 ligands: MnII(P-MCP)(OTf)2 (1; P-MCP = (1R,2R)-N,N′-dimethyl-N,N′-bis-(phenyl-2-pyridinylmethyl)cyclohexane-1,2-diamine and OTf = CF3SO3 ), MnII(Dpb-MCP)(OTf)2 (2; Dbp-MCP = (1R,2R)-N,N′-di-methyl-N,N′-bis((R)-(3,5-di-tert-butylphenyl)-2-pyridinylmethyl)cyclohexane-1,2-diamine) and MnII(MCP)(OTf)2 (3; MCP = (1R,2R)-N,N′-dimethyl-N,N′-bis(2-pyridinylmethyl)cyclohexane-1,2-diamine). (B) Summary of the alcohol oxidation reaction. (C) Summary of the oxidative kinetic resolution (OKR) of secondary alcohols.
Fig. 1
Fig. 1. Plots of the conversion yields (black triangles) of 1-phenylethanol and the ee values (red circles) of unreacted 1-phenylethanol against the number of equivalents of H2O2 obtained in the catalytic oxidation of 1-phenylethanol (0.50 mmol) by 2 (0.20 mol%) and H2O2 (0–1.0 equiv. based on the concentration of the substrate) in the presence of H2SO4 (1.0 mol%) in CH3CN at 0 °C for 1 h.
Fig. 2
Fig. 2. Hammett plot of log k rel against the Hammett parameter (σ) for the catalytic oxidation of para-substituted benzyl alcohols by 1 (0.30 mol%) with H2O2 (0.40 equiv. based on the concentration of the substrate) as an oxidant in the presence of H2SO4 (0.30 mol%) in CH3CN at 25 °C.
Scheme 2
Scheme 2. Oxidation of cyclobutanol to cyclobutanone.

Similar articles

Cited by

References

    1. Abu-Omar M. M., Loaiza A., Hontzeas N. Chem. Rev. 2005;105:2227. - PubMed
    2. Krebs C., Fujimori D. G., Walsh C. T., Bollinger Jr J. M. Acc. Chem. Res. 2007;40:484. - PMC - PubMed
    3. Nam W. Acc. Chem. Res. 2007;40:522. - PubMed
    4. Cook S. A., Borovik A. S. Acc. Chem. Res. 2015;48:2407. - PMC - PubMed
    5. Nam W. Acc. Chem. Res. 2015;48:2415. - PubMed
    6. Puri M., Que Jr L. Acc. Chem. Res. 2015;48:2443. - PMC - PubMed
    7. Ray K., Heims F., Schwalbe M., Nam W. Curr. Opin. Chem. Biol. 2015;25:159. - PubMed
    8. Engelmann X., Monte-Pérez I., Ray K. Angew. Chem., Int. Ed. 2016;55:7632. - PubMed
    9. Sahu S., Goldberg D. P. J. Am. Chem. Soc. 2016;138:11410. - PMC - PubMed
    10. Proshlyakov D. A., McCracken J., Hausinger R. P. J. Biol. Inorg. Chem. 2017;22:367. - PMC - PubMed
    11. Yosca T. H., Ledray A. P., Ngo J., Green M. T. J. Biol. Inorg. Chem. 2017;22:209. - PMC - PubMed
    12. Kal S., Que Jr L. J. Biol. Inorg. Chem. 2017;22:339. - PubMed
    1. Que Jr L., Tolman W. B. Nature. 2008;455:333. - PubMed
    2. Gopalaiah K. Chem. Rev. 2013;113:3248. - PubMed
    3. Saisaha P., de Boer J. W., Browne W. R. Chem. Soc. Rev. 2013;42:2059. - PubMed
    4. Gelalcha F. G. Adv. Synth. Catal. 2014;356:261.
    5. Chen Z., Yin G. Chem. Soc. Rev. 2015;44:1083. - PubMed
    6. Collins T. J., Ryabov A. D. Chem. Rev. 2017;117:9140. - PubMed
    1. Codola Z., Lloret-Fillol J., Costas M. Prog. Inorg. Chem. 2014;59:447.
    2. Cussó O., Ribas X., Costas M. Chem. Commun. 2015;51:14285. - PubMed
    3. Olivo G., Cussó O., Costas M. Chem.–Asian J. 2016;11:3148. - PubMed
    4. Canta M., Rodríguez M., Costas M. Top. Curr. Chem. 2016;372:27. - PubMed
    5. Olivo G., Cussó O., Borrell M., Costas M. J. Biol. Inorg. Chem. 2017;22:425. - PubMed
    6. Milan M., Bietti M., Costas M. ACS Cent. Sci. 2017;3:196. - PMC - PubMed
    1. Oloo W. N., Que Jr L. Acc. Chem. Res. 2015;48:2612. - PubMed
    2. Oloo W. N., Meier K. K., Wang Y., Shaik S., Münck E., Que Jr L. Nat. Commun. 2014;5:3046. - PubMed
    3. Wang Y., Janardanan D., Usharani D., Han K., Que Jr L., Shaik S. ACS Catal. 2013;3:1334.
    4. Feng Y., England J., Que Jr L. ACS Catal. 2011;1:1035.
    1. Talsi E. P., Bryliakov K. P. Coord. Chem. Rev. 2012;256:1418.
    2. Bryliakov K. P., Talsi E. P. Coord. Chem. Rev. 2014;276:73.
    3. Ottenbacher R. V., Talsi E. P., Bryliakov K. P. Molecules. 2016;21:1454. - PMC - PubMed
    4. Ottenbacher R. V., Talsi E. P., Bryliakov K. P. Catal. Today. 2016;278:30.
    5. Zima A. M., Lyakin O. Y., Ottenbacher R. V., Bryliakov K. P., Talsi E. P. ACS Catal. 2017;7:60.
    6. Bryliakov K. P. Chem. Rev. 2017;117:11406. - PubMed

LinkOut - more resources