Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 1;314(3):G341-G348.
doi: 10.1152/ajpgi.00317.2017. Epub 2017 Nov 22.

Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats

Affiliations
Free article

Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats

Hiroyuki Nakamori et al. Am J Physiol Gastrointest Liver Physiol. .
Free article

Abstract

Colorectal motility is regulated by two defecation centers located in the brain and spinal cord. In previous studies, we have shown that administration of serotonin (5-HT) in the lumbosacral spinal cord causes enhancement of colorectal motility. Because spinal 5-HT is derived from neurons of the medullary raphe nuclei, including the raphe magnus, raphe obscurus, and raphe pallidus, we examined whether stimulation of the medullary raphe nuclei enhances colorectal motility via the lumbosacral defecation center. Colorectal pressure was recorded with a balloon in vivo in anesthetized rats. Electrical stimulation of the medullary raphe nuclei failed to enhance colorectal motility. Because GABAergic neurons can be simultaneously activated by the raphe stimulation and released GABA masks accelerating actions of the raphe nuclei on the lumbosacral defecation center, a GABAA receptor antagonist was preinjected intrathecally to manifest excitatory responses. When spinal GABAA receptors were blocked by the antagonist, electrical stimulation of the medullary raphe nuclei increased colorectal contractions. This effect of the raphe nuclei was inhibited by intrathecal injection of 5-hydroxytryptamine type 2 (5-HT2) and type 3 (5-HT3) receptor antagonists. In addition, injection of a selective 5-HT reuptake inhibitor in the lumbosacral spinal cord augmented the raphe stimulation-induced enhancement of colorectal motility. Transection of the pelvic nerves, but not transection of the colonic nerves, prevented the effect of the raphe nuclei on colorectal motility. These results demonstrate that activation of the medullary raphe nuclei causes augmented contractions of the colorectum via 5-HT2 and 5-HT3 receptors in the lumbosacral defecation center. NEW & NOTEWORTHY We have shown that electrical stimulation of the medullary raphe nuclei causes augmented contractions of the colorectum via pelvic nerves in rats. The effect of the medullary raphe nuclei on colorectal motility is exerted through activation of 5-hydroxytryptamine type 2 and type 3 receptors in the lumbosacral defecation center. The descending serotoninergic raphespinal tract represents new potential therapeutic targets against colorectal dysmotility such as irritable bowel syndrome.

Keywords: descending pain inhibitory pathway; gut motility; serotonin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources