Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct;34(5):405-415.
doi: 10.1007/s10565-017-9418-5. Epub 2017 Nov 22.

Progress and challenges of sequencing and analyzing circulating tumor cells

Affiliations
Review

Progress and challenges of sequencing and analyzing circulating tumor cells

Zhongyi Zhu et al. Cell Biol Toxicol. 2018 Oct.

Abstract

Circulating tumor cells (CTCs) slough off primary tumor tissues and are swept away by the circulatory system. These CTCs can remain in circulation or colonize new sites, forming metastatic clones in distant organs. Recently, CTC analyses have been successfully used as effective clinical tools to monitor tumor progression and prognosis. With advances in next-generation sequencing (NGS) and single-cell sequencing (SCS) technologies, scientists can obtain the complete genome of a CTC and compare it with corresponding primary and metastatic tumors. CTC sequencing has been successfully applied to monitor genomic variations in metastatic and recurrent tumors, infer tumor evolution during treatment, and examine gene expression as well as the mechanism of the epithelial-mesenchymal transition. However, compared with cancer biopsy sequencing and circulating tumor DNA sequencing, the sequencing of CTC genomes and transcriptomes is more complex and technically difficult. Challenges include enriching pure tumor cells from a background of white blood cells, isolating and collecting cells without damaging or losing DNA and RNA, obtaining unbiased and even whole-genome and transcriptome amplification material, and accurately analyzing CTC sequencing data. Here, we review and summarize recent studies using NGS on CTCs. We mainly focus on CTC genome and transcriptome sequencing and the biological and potential clinical applications of these methodologies. Finally, we discuss challenges and future perspectives of CTC sequencing.

Keywords: Circulating tumor cell; Next-generation sequencing; Single-cell sequencing.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The workflow of circulating tumor cell sequencing
Fig. 2
Fig. 2
Biological and potential clinical applications of CTC sequencing. a The CNV pattern of CTCs in a prostate cancer patient changed under therapeutic pressure. b CTC sequencing served as an efficient tool to uncover biological insights concerning tumor evolution. c RNA sequencing of CTCs enabled the exploration of metastasis-related pathways
Fig. 3
Fig. 3
CTC sequencing biases introduced during amplification and library preparation. a Allele drop out (ADO) during genome amplification leads to the loss of the detection of somatic mutant alleles in CTCs, and false-positive results can also be introduced into both WGA and library processes. b Chimeras will lead to artificial CNV and SV detection in CTC sequencing. c The limitations of the WGA method may lead to low genome coverage or uneven read distribution effects when compared to bulk tumor sequencing

Similar articles

Cited by

References

    1. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–1122. doi: 10.1016/j.cell.2014.07.013. - DOI - PMC - PubMed
    1. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol. 2001;11(11):S44–S51. doi: 10.1016/S0962-8924(01)02130-4. - DOI - PubMed
    1. Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623–631. doi: 10.1038/nrc3820. - DOI - PubMed
    1. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–491. doi: 10.1158/2159-8290.CD-15-1483. - DOI - PubMed
    1. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–6904. doi: 10.1158/1078-0432.CCR-04-0378. - DOI - PubMed

Publication types

MeSH terms