Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May;42(5):516-524.
doi: 10.1111/aor.13020. Epub 2017 Nov 23.

Experimental Investigation of Left Ventricular Flow Patterns After Percutaneous Edge-to-Edge Mitral Valve Repair

Affiliations

Experimental Investigation of Left Ventricular Flow Patterns After Percutaneous Edge-to-Edge Mitral Valve Repair

Morteza Jeyhani et al. Artif Organs. 2018 May.

Abstract

Mitral valve percutaneous edge-to-edge repair (PEtER) is a viable solution in high-risk patients with severe symptomatic mitral regurgitation. However, the generated double-orifice configuration poses challenges for the evaluation of the hemodynamic performance of the mitral valve and may alter flow patterns in the left ventricle (LV) during diastole. This in vitro study aims to evaluate the hemodynamic modifications following a simulated PEtER. A custom-made mitral valve was developed, and two configurations were tested: (i) a single-orifice valve with mitral regurgitation and (ii) a double-orifice mitral valve configuration following PEtER. The hemodynamic performance of the valve was evaluated using Doppler echocardiography and catheterization, while the flow patterns in the LV were investigated using particle image velocimetry (PIV). The tests were run at a stroke volume of 65 mL and a heart rate of 70 bpm. PEtER was found to significantly reduce the regurgitant volume (15 vs. 34 mL). There was a good agreement between Doppler and catheter transmitral pressure gradients (peak gradient: 9 vs. 7 mm Hg; mean gradient: 4 vs. 3 mm Hg) as well as an excellent agreement between maximal velocity measured by Doppler and PIV (1.60 vs. 1.58 m/s). Vortex development in the LV during diastole was significantly different after repair. PEtER significantly increased the amplitude of Reynolds and viscous shear stresses, as well as the number of high shear regions in the LV, potentially promoting thromboembolism events.

Keywords: Doppler echocardiography; Flow pattern; Hemodynamic performance; Mitral valve; Particle image velocimetry; Percutaneous edge-to-edge repair.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources