Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;35(2):211-222.
doi: 10.14573/altex.1607191. Epub 2017 Nov 23.

Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines

Affiliations
Free article

Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines

Stephanie Kletting et al. ALTEX. 2018.
Free article

Abstract

The air-blood barrier is mainly composed of alveolar epithelial cells and macrophages. Whereas the epithelium acts as a diffusional barrier, macrophages represent an immunological barrier, in particular for larger molecules and nanoparticles. This paper describes a new co-culture of human cell lines representing both cell types. Acquiring, culturing and maintaining primary alveolar epithelial cells presents significant logistical and technical difficulties. The recently established human alveolar epithelial lentivirus immortalized cell line, hAELVi, when grown on permeable filters, form monolayers with high functional and morphological resemblance to alveolar type I cells. To model alveolar macrophages, the human cell line THP-1 was seeded on pre-formed hAELVi monolayers. The co-culture was characterized regarding cellular morphology, viability and barrier function. Macrophages were homogenously distributed on the epithelium and could be kept in co-culture for up to 7 days. Transmission electron microscopy showed loose contact between THP-1 and hAELVi cells. When grown at air liquid interface, both cells were covered with extracellular matrix-like structure, which was absent in THP-1 mono culture. In co-culture with macrophages, hAELVi cells displayed similar, sometimes even higher, trans-epithelial electrical resistance than in mono-cultures. When exposed to silver and starch NPs, hAELVi mono-cultures were more tolerant to the particles than THP-1 mono-cultures. The viability in the co-culture was similar to that of hAELVi monocultures. Transport studies with sodium fluorescein in presence/absence of EDTA proved that the co culture acts as functional diffusion barrier. These data demonstrate that hAELVi-/THP-1 co-cultures represent a promising model for safety and permeability studies of inhaled chemicals, drugs and nanoparticles.

Keywords: In vitro model; air-blood barrier; nanoparticles; nanotoxicology; pulmonary drug delivery.

PubMed Disclaimer