Extracellular Microvesicles as Game Changers in Better Understanding the Complexity of Cellular Interactions-From Bench to Clinical Applications
- PMID: 29173353
- PMCID: PMC5726870
- DOI: 10.1016/j.amjms.2017.06.001
Extracellular Microvesicles as Game Changers in Better Understanding the Complexity of Cellular Interactions-From Bench to Clinical Applications
Abstract
Recent research has led to wide acceptance and better understanding of a novel mechanism for cell-cell communication that employs a network of extracellular microvesicles (ExMVs). Derived from the plasma membrane or the endosomal membrane compartment, these small, spherical membrane fragments are secreted from the cell surface or in the process of exocytosis from endosomal membrane compartment and (1) with ligands expressed on their surface directly stimulate target cells in a paracrine manner, (2) transfer cell membrane receptors to target cells or (3) deliver encapsulated messenger RNA, microRNA, proteins and bioactive lipids to target cells. This represents an evolutionarily ancient mechanism by which cells signal their presence in the microenvironment, communicate with each other and affect the biology of neighboring cells. Evidence suggests the pivotal role of ExMVs in almost all biological processes within the body as well as their involvement in certain pathologies. Moreover, liquid biopsies based on deciphering the molecular signature of ExMVs promise to revolutionize laboratory diagnostics. At the same time, there are ongoing attempts to employ them as delivery vehicles for drugs as well as therapeutics in regenerative medicine, oncology and immunotherapy.
Keywords: Cell communication; Exosomes; Extracellular microvesicles; Horizontal transfer of RNA and proteins; Liquid biopsies.
Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
None to report.
Figures

References
-
- Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 1006;20:1487–95. - PubMed
-
- Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O’Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BW, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087. - PMC - PubMed
-
- Roberts CT, Jr, Kurre P. Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res. 2013;73:3200–5. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources