An elemental approach to modelling the mechanics of the cochlea
- PMID: 29174619
- PMCID: PMC5854296
- DOI: 10.1016/j.heares.2017.10.013
An elemental approach to modelling the mechanics of the cochlea
Abstract
The motion along the basilar membrane in the cochlea is due to the interaction between the micromechanical behaviour of the organ of Corti and the fluid movement in the scalae. By dividing the length of the cochlea into a finite number of elements and assuming a given radial distribution of the basilar membrane motion for each element, a set of equations can be separately derived for the micromechanics and for the fluid coupling. These equations can then be combined, using matrix methods, to give the fully coupled response. This elemental approach reduces to the classical transmission line model if the micromechanics are assumed to be locally-reacting and the fluid coupling is assumed to be entirely one-dimensional, but is also valid without these assumptions. The elemental model is most easily formulated in the frequency domain, assuming quasi-linear behaviour, but a time domain formulation, using state space method, can readily incorporate local nonlinearities in the micromechanics. Examples of programs are included for the elemental model of a human cochlea that can be readily modified for other species.
Keywords: Basilar membrane motion; Cochlea; Elemental model; Fluid coupling; Micromechanics.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Figures







Similar articles
-
Fitting pole-zero micromechanical models to cochlear response measurements.J Acoust Soc Am. 2017 Aug;142(2):666. doi: 10.1121/1.4996128. J Acoust Soc Am. 2017. PMID: 28863604
-
Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.J Acoust Soc Am. 2015 Mar;137(3):1117-25. doi: 10.1121/1.4908214. J Acoust Soc Am. 2015. PMID: 25786927 Free PMC article.
-
A wave finite element analysis of the passive cochlea.J Acoust Soc Am. 2013 Mar;133(3):1535-45. doi: 10.1121/1.4790350. J Acoust Soc Am. 2013. PMID: 23464024
-
Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.Hear Res. 2018 Mar;360:3-13. doi: 10.1016/j.heares.2017.11.003. Epub 2017 Nov 10. Hear Res. 2018. PMID: 29169906 Free PMC article. Review.
-
Experimental and clinical aspects of the efferent auditory system.Acta Neurochir Suppl. 2007;97(Pt 2):419-24. doi: 10.1007/978-3-211-33081-4_47. Acta Neurochir Suppl. 2007. PMID: 17691330 Review.
Cited by
-
Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration.J Clin Med. 2020 Jun 2;9(6):1711. doi: 10.3390/jcm9061711. J Clin Med. 2020. PMID: 32498432 Free PMC article.
-
Evaluation of thin-slice finite-element models for 3D cochlear organ of Corti mechanics.Hear Res. 2025 Aug 5;466:109378. doi: 10.1016/j.heares.2025.109378. Online ahead of print. Hear Res. 2025. PMID: 40773860
-
Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro.Biophys J. 2020 Jul 21;119(2):314-325. doi: 10.1016/j.bpj.2020.06.011. Epub 2020 Jun 17. Biophys J. 2020. PMID: 32579963 Free PMC article.
-
Cochlea-inspired design of an acoustic rainbow sensor with a smoothly varying frequency response.Sci Rep. 2020 Jul 1;10(1):10803. doi: 10.1038/s41598-020-67608-z. Sci Rep. 2020. PMID: 32612245 Free PMC article.
-
A canonical oscillator model of cochlear dynamics.Hear Res. 2019 Sep 1;380:100-107. doi: 10.1016/j.heares.2019.06.001. Epub 2019 Jun 14. Hear Res. 2019. PMID: 31234108 Free PMC article.
References
-
- Chan W.X., Yoon Y.J. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea. Hear. Res. 2015;327:136–142. - PubMed
-
- de Boer E. Mechanics of the cochlea: modelling efforts. In: Dallos P., Popper A.N., Fay R.R., editors. The Cochlea. Springer; New York: 1996. pp. 258–317.
-
- de Boer E. Forward and reverse waves in nonclassical models of the cochlea. J. Acoust. Soc. Am. 2007;121:2819–2821. - PubMed
-
- de Boer E., Viergever M.A. Validity of the Liouville-Green (or WKB) method for cochlear mechanics. Hear. Res. 1982;8:131–155. - PubMed
-
- Elliott S.J., Ku E.M., Lineton B. A state space model for cochlear mechanics. J. Acoust. Soc. Am. 2007;122:2759–2771. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources