Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 27;18(1):42.
doi: 10.1186/s40510-017-0195-8.

A review of biomarkers in peri-miniscrew implant crevicular fluid (PMICF)

Affiliations
Review

A review of biomarkers in peri-miniscrew implant crevicular fluid (PMICF)

Avinash Kaur et al. Prog Orthod. .

Abstract

Background: The temporary anchorage devices (TADs) which include miniscrew implants (MSIs) have evolved as useful armamentarium in the management of severe malocclusions and assist in complex tooth movements. Although a multitude of factors is responsible for the primary and secondary stability of miniscrew implants, contemporary research highlights the importance of biological interface of MSI with bone and soft tissue in augmenting the success of implants. The inflammation and remodeling associated with MSI insertion or loading are reflected through biomarkers in peri-miniscrew implant crevicular fluid (PMICF) which is analogous to the gingival crevicular fluid. Analysis of biomarkers in PMICF provides indicators of inflammation at the implant site, osteoclast differentiation and activation, bone resorption activity and bone turnover. The PMICF for assessment of these biomarkers can be collected non-invasively via paper strips, periopaper or micro capillary pipettes and analysed by enzyme-linked immunosorbent assay (ELISA) or immunoassays. The markers and mediators of inflammation have been previously studied in relation to orthodontic tooth movement include interleukins (IL-1β, IL-2, IL-6 and IL-8), growth factors and other proteins like tumour necrosis factor (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), chondroitin sulphate (CS) and osteoprotegerin (OPG). Studies have indicated that successful and failed MSIs have different concentrations of biomarkers in PMICF. However, there is a lack of comprehensive information on this aspect of MSIs. Therefore, a detailed review was conducted on the subject.

Results: A literature search revealed six relevant studies: two on IL-1β; one on IL-2, IL-6 and IL-8; one on TNF-α; one on CS; and one on RANKL/OPG ratio. One study showed an increase in IL-1β levels upon MSI loading, peak in 24 hours (h), followed by a decrease in 21 days to reach baseline in 300 days. A 6.87% decrease in IL-2 levels was seen before loading and a 5.97% increase post-loading. IL-8 showed a 6.31% increase after loading and IL-6 increased by 3.08% before MSI loading and 15.06% after loading. RANKL/OPG ratio increased in loaded compared to unloaded MSIs.

Conclusions: Cytokines (mainly ILs and TNF-α) and RANKL/OPG ratio showed alteration in PMICF levels upon loading of MSIs as direct or indirect anchorage.

Keywords: Biomarker; IL-1β, IL-2, IL-6, IL-8; OPG; Orthodontic tooth movement (OTM); Peri-miniscrew implant crevicular fluid (PMICF); RANKL; TNF-α.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Factors affecting implant stability

References

    1. Migliorati M, Drago S, Gallo F, Amorfini L, Dalessandri D, Calzolari C, Benedicenti S, Silvestrini-Biavati A. Immediate versus delayed loading: comparison of primary stability loss after miniscrew placement in orthodontic patients-a single-centre blinded randomized clinical trial. Eur J Orthod. 2016;38(6):652–59. - PubMed
    1. Shank SB, Beck FM, D’Atri AM, Huja SS. Bone damage associated with orthodontic placement of miniscrew implants in an animal model. Am J Orthod Dentofac Orthop. 2012;141(4):412–418. doi: 10.1016/j.ajodo.2011.10.021. - DOI - PubMed
    1. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofac Orthop. 2009;135(3):284–291. doi: 10.1016/j.ajodo.2007.08.017. - DOI - PubMed
    1. Freitas AOA, Alviano CS, Alviano DS, Siqueira JF, Nojima LI, Nojima Mda CG. Microbial colonization in orthodontic mini-implants. Braz Dent J. 2012;23:422–427. doi: 10.1590/S0103-64402012000400019. - DOI - PubMed
    1. Monga N, Chaurasia S, Kharbanda OP, Duggal R, Rajeswari MR. A study of interleukin 1beta levels in peri-miniscrew crevicular fluid (PMCF) Prog Orthod. 2014;15(1):30. doi: 10.1186/s40510-014-0030-4. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources