Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 28;15(1):87.
doi: 10.1186/s12951-017-0316-z.

Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells

Affiliations

Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells

Yi Zhou et al. J Nanobiotechnology. .

Abstract

Background: Chemotherapeutic drugs used for cancer therapy frequently encounter multiple-drug resistance (MDR). Nanoscale carriers that can target tumors to accumulate and release drugs intracellularly have the greatest potential for overcoming MDR. Glucose transporter-1 (GLUT-1) and glutathione (GSH) overexpression in cancer cells was exploited to assemble aminoglucose (AG)-conjugated, redox-responsive nanomicelles from a single disulfide bond-bridged block polymer of polyethylene glycol and polylactic acid (AG-PEG-SS-PLA). However, whether this dual functional vector can overcome MDR in lung cancer is unknown.

Results: In this experiment, AG-PEG-SS-PLA was synthetized successfully, and paclitaxel (PTX)-loaded AG-PEG-SS-PLA (AG-PEG-SS-PLA/PTX) nanomicelles exhibited excellent physical properties. These nanomicelles show enhanced tumor targeting as well as drug accumulation and retention in MDR cancer cells. Caveolin-dependent endocytosis is mainly responsible for nanomicelle internalization. After internalization, the disulfide bond of AG-PEG-SS-PLA is cleaved in the presence of high intracellular glutathione levels, causing the hydrophobic core to become a polar aqueous solution, which subsequently results in nanomicelle disassembly and the rapid release of encapsulated PTX. Reduced drug resistance was observed in cancer cells in vitro. The caspase-9 and caspase-3 cascade was activated by the AG-PEG-SS-PLA/PTX nanomicelles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the anti-apoptotic protein Bcl-2, thereby increasing apoptosis. Furthermore, significantly enhanced tumor growth inhibition was observed in nude mice bearing A549/ADR xenograft tumors after the administration of AG-PEG-SS-PLA/PTX nanomicelles via tail injection.

Conclusions: These promising results indicate that AG-PEG-SS-PLA/PTX nanomicelles could provide the foundation for a paradigm shift in MDR cancer therapy.

Keywords: Cancer therapy; Gult-1; Multidrug resistance; Nanomicelles; Redox-responsive polymer.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Schematic representation of the assembly, tumor targeting, and cellular internalization of AG-PEG-SS-PLA nanomicelles leading to reversal of MDR in lung cancer therapy
Scheme 2
Scheme 2
Synthetic scheme showing the various steps required to prepare AG-PEG-SS-PLA
Fig. 1
Fig. 1
1H NMR of P-P, P-SS-P, and AG-P-SS-P
Fig. 2
Fig. 2
a Excitation spectra of pyrene in an AG-P-SS-P solution after incubation with GSH for different time periods (λem = 373 nm). b I340-to-I336 ratio of AG-P-SS-P and P-SS-P after incubation with GSH for different time periods (λem = 373 nm). DLS measurement (c) and TEM images (d) of AG-P-SS-P/PTX, P-SS-P/PTX, and P-P/PTX. Scale bar = 100 nm. e In vitro PTX release profiles of AG-P-SS-P/PTX, P-SS-P/PTX, and P-P/PTX in PBS (pH 7.4) without GSH at 37 °C; release profile of AG-P-SS-P/PTX in the presence of 5 mM GSH; and release profiles of AG-P-SS-P/PTX and P-SS-P/PTX in the presence of 10 mM GSH. f Retention of PTX in A549/ADR cells after preincubation with AG-P-SS-P/PTX, P-SS-P/PTX, P-P/PTX, and Taxol for different time periods. All data are presented as the means ± standard deviations (n = 3); *P < 0.05, compared with P-P/PTX without GSH, P-SS-P/PTX without GSH, AG-P-SS-P/PTX without GSH and AG-P-SS-P/PTX with GSH (5 mM) nanomicelles. *P < 0.05, compared with Taxol, P-P/PTX and P-SS-P/PTX nanomicelles, respectively
Fig. 3
Fig. 3
a The cellular uptake of AG-P-SS-P/Rh123 with 0 and 10 mM GSH by A549/ADR cells using laser scanning confocal microscopy (×400). b1 CLSM images of A549/ADR cells after 30 min of incubation with P-SS-P/Rh123 (non-targeted) and AG-P-SS-P/Rh123 (targeted) (×200). Free AG (10 mM) was used to block GLUT1 binding before adding AG-P-SS-P/Rh123. b2 Fluorescence intensity of Rh123-loaded P-SS-P (non-targeted) and AG-P-SS-P (targeted) in A549/ADR cells. Quantitative analysis was performed with ImageJ. *P < 0.05, compared with 10 mM GSH. *P < 0.05, compared with AG-P-SS-P/Rh123 nanomicelles, respectively. (1) Image of CLSM; (2) Fluorescence intensity of image
Fig. 4
Fig. 4
Flow cytometry analyses of A549 (a) and A549/ADR (b) cells following a 2-h incubation with free Rh123, P-P/Rh123, P-SS-P/Rh123, or AG-P-SS-P/Rh123. c Laser scanning confocal microscopy-based comparison of the cellular uptake of Rh123 from different formulations by A549 and A549/ADR cells (scale bar, 30 mm). d Analysis of the pathway responsible for the uptake of AG-P-SS-P/Rh123 nanomicelles by A549 cells. This analysis was performed 30 min after incubation. The cells were blocked with different inhibitors: 2 mM AG, 10 mM AG, 1 μg/mL colchicine, 0.4 μg/mL PhAsO, or 0.5 μg/mL filipin. Green, Rh123 (scale bar, 50 mm). *P < 0.05, compared with Free Rh123 in A549/PTX cells, respectively. *P < 0.05, compared with PBS, respectively. (1) Image of CLSM; (2) fluorescence intensity of image
Fig. 5
Fig. 5
Flow cytometry analyses of A549/ADR cells after incubation with AG-P-SS-P/Rh123. The A549/ADR cells were precultured with BSO or GSH-OEt. *P < 0.05, compared with Free Rh123 in A549/PTX cells, respectively. *P < 0.05, compared with PBS, respectively. 1, image of CLSM; 2, Fluorescence intensity of image
Fig. 6
Fig. 6
a Viability of A549 (a1) and A549/ADR (a2) cells cultured with PTX-loaded nanomicelles in comparison with that of Taxol at the same PTX dose for 48 h. b Cell apoptosis rate detected by flow cytometry. A549 and A549/ADR cells were treated with different formulations that contained a total PTX concentration of 10 µM for 24 h. c Proteins involved in the apoptosis signaling pathways in A549 and A549/ADR cells as determined by Western blotting (c1). (1) Control (PBS); (2) Taxol; (3) P-P/PTX; (4) P-SS-P/PTX; and (5) AG-P-SS-P/PTX nanomicelles. Activity ratios of caspase-3 and caspase-9 and expression ratios of the pro-apoptotic proteins Bax and Bid and the anti-apoptotic proteins Bcl-2 and Bcl-xl in A549 and A549/ADR cells after incubation with the various formulations. β-actin was also assessed by Western blotting. All protein levels were quantified densitometrically and normalized to β-actin (c2). All data are presented as the means ± standard deviations (n = 3); (1) image of western blot; (2) grey level of western blot. *P < 0.05, compared with AG-P-SS-P/PTX nanomicelles. #P < 0.05, compared with A549 cells
Fig. 7
Fig. 7
Tumor images (a1) and tumor growth inhibition graph (a2) for a murine model with A549/ADR xenografts after intravenous injection with the different formulations. b Body weight changes of the tumor-bearing mice after treatment with the various formulations. The arrow indicates the day of drug administration. The data are presented as the means ± standard deviations (n = 5); aP < 0.05 compared with the control; bP < 0.05 compared with Taxol; cP < 0.05 compared with P-P/PTX; and dP < 0.05 compared with P-SS-P/PTX nanomicelles

References

    1. Wang H, Yang S, Zhou H, Sun M, Du L, Wei M, Luo M, Huang J, Deng H, Feng Y, et al. Aloperine executes antitumor effects against multiple myeloma through dual apoptotic mechanisms. J Hematol Oncol. 2015;8:26. doi: 10.1186/s13045-015-0120-x. - DOI - PMC - PubMed
    1. Wang YC, Wang F, Sun TM, Wang J. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjug Chem. 2011;22:1939–1945. doi: 10.1021/bc200139n. - DOI - PubMed
    1. Wang H, Yin H, Yan F, Sun M, Du L, Peng W, Li Q, Feng Y, Zhou Y. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance. Oncotarget. 2015;6:2827–2842. doi: 10.18632/oncotarget.3090. - DOI - PMC - PubMed
    1. Ren T, Wu W, Jia M, Dong H, Li Y, Ou Z. Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS Appl Mater Interfaces. 2013;5:10721–10730. doi: 10.1021/am402860v. - DOI - PubMed
    1. Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, Luo L, Zuo Y, Wang X, Zhang X, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13:1700623. doi: 10.1002/smll.201700623. - DOI - PubMed

MeSH terms