Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 27;9(1):102.
doi: 10.1186/s13073-017-0496-z.

Neuroimaging genomics in psychiatry-a translational approach

Affiliations
Review

Neuroimaging genomics in psychiatry-a translational approach

Mary S Mufford et al. Genome Med. .

Abstract

Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene-gene epistasis, and gene-environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics-we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Timeline of methodological approaches common in neuroimaging-genomics studies of neuropsychological disorders. The field of neuroimaging genomics was initiated in the early 2000s using a hypothesis-driven candidate-gene approach to investigate brain and behavior phenotypes [2, 3]. Towards the end of the decade, other candidate-gene approaches, investigating alternative genetic models, began to emerge. These included gene–gene interactions [172], gene–environment interactions [7], and epigenetic effects [6]. Simultaneously, hypothesis-free approaches such as genome-wide association studies (GWAS) were initiated [173] and the need for increased statistical power to detect variants of small individual effects soon led to the formation of large-scale consortia and collaborations [36, 37]. The emergence of the “big data” era presented many statistical challenges and drove the development of multivariate approaches to account for these [174]. GWAS of neuropsychological disorders soon identified significant associations with genetic variants with unknown biological roles, resulting in candidate neuroimaging genomics studies to investigate and validate the genetic effects on brain phenotypes [175]. The emergent polygenic nature of these traits encouraged the development of polygenic models and strategies to leverage this for increased power in genetic-overlap studies between clinical and brain phenotypes [114]. Most recently, hypothesis-free approaches are starting to extend to alternative genetic models, such as gene–gene interactions [70]

References

    1. Kovelman I. Neuroimaging methods. In: Hoff E, editor. Research methods in child language: a practical guide. Oxford, UK: Wiley-Blackwell; 2011. pp. 43–59.
    1. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343:450–6. doi: 10.1056/NEJM200008173430701. - DOI - PMC - PubMed
    1. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology. 2000;22:133–9. doi: 10.1016/S0893-133X(99)00099-8. - DOI - PubMed
    1. Hibar DP, Stein JL, Renteria ME. Common genetic variants influence human subcortical brain structures. Nature. 2015;520:224–9. doi: 10.1038/nature14101. - DOI - PMC - PubMed
    1. Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK, et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: Biological validation with functional neuroimaging. Hum Genet. 2010;127:441–52. doi: 10.1007/s00439-009-0782-y. - DOI - PubMed

Publication types

LinkOut - more resources