Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes
- PMID: 29184573
- PMCID: PMC5680655
- DOI: 10.4103/jrms.JRMS_6_17
Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes
Abstract
Background: Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes.
Materials and methods: This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model (P < 0.20) were entered into the multivariate Cox and parametric models (P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS).
Results: Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy (P < 0.05).
Conclusion: According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.
Keywords: Cox proportional hazards model; Kaplan–Meier; diabetes; neuropathy; parametric models.
Conflict of interest statement
The authors have no conflicts of interest.
Figures
References
-
- Morgan CL, Currie CJ, Stott NC, Smithers M, Butler CC, Peters JR, et al. The prevalence of multiple diabetes-related complications. Diabet Med. 2000;17:146–51. - PubMed
-
- Janghorbani M, Rezvanian H, Kachooei A, Ghorbani A, Chitsaz A, Izadi F, et al. Peripheral neuropathy in type 2 diabetes mellitus in Isfahan, Iran: Prevalence and risk factors. Acta Neurol Scand. 2006;114:384–91. - PubMed
-
- Zeiqler D. Current evidence for treating diabetic neuropathy. J Peripher Nerv Syst. 2000;5:172–5.
LinkOut - more resources
Full Text Sources
Other Literature Sources
