Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
- PMID: 29187645
- PMCID: PMC5749406
- DOI: 10.1126/scitranslmed.aan8081
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
Erratum in
-
Erratum for the Research Article: "Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy" by L. Amoasii, C. Long, H. Li, A. A. Mireault, J. M. Shelton, E. Sanchez-Ortiz, J. R. McAnally, S. Bhattacharyya, F. Schmidt, D. Grimm, S. D. Hauschka, R. Bassel-Duby, E. N. Olson.Sci Transl Med. 2018 Jan 24;10(425):eaat0240. doi: 10.1126/scitranslmed.aat0240. Sci Transl Med. 2018. PMID: 29367344 No abstract available.
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Conflict of interest statement
Figures







Similar articles
-
Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.Mol Ther. 2020 Sep 2;28(9):2044-2055. doi: 10.1016/j.ymthe.2020.05.024. Epub 2020 May 30. Mol Ther. 2020. PMID: 32892813 Free PMC article.
-
In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.Circ Res. 2017 Sep 29;121(8):923-929. doi: 10.1161/CIRCRESAHA.117.310996. Epub 2017 Aug 8. Circ Res. 2017. PMID: 28790199 Free PMC article.
-
In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers.Genome Med. 2021 Apr 12;13(1):57. doi: 10.1186/s13073-021-00876-0. Genome Med. 2021. PMID: 33845891 Free PMC article.
-
Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.RNA Biol. 2021 Jul;18(7):1048-1062. doi: 10.1080/15476286.2021.1874161. Epub 2021 Jan 20. RNA Biol. 2021. PMID: 33472516 Free PMC article. Review.
-
Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing.Expert Opin Biol Ther. 2021 Aug;21(8):1049-1061. doi: 10.1080/14712598.2021.1872539. Epub 2021 Jan 25. Expert Opin Biol Ther. 2021. PMID: 33401973 Review.
Cited by
-
Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.Mol Ther. 2020 Sep 2;28(9):2044-2055. doi: 10.1016/j.ymthe.2020.05.024. Epub 2020 May 30. Mol Ther. 2020. PMID: 32892813 Free PMC article.
-
Sensitive and reliable evaluation of single-cut sgRNAs to restore dystrophin by a GFP-reporter assay.PLoS One. 2020 Sep 24;15(9):e0239468. doi: 10.1371/journal.pone.0239468. eCollection 2020. PLoS One. 2020. PMID: 32970732 Free PMC article.
-
Therapeutic approaches for Duchenne muscular dystrophy.Nat Rev Drug Discov. 2023 Nov;22(11):917-934. doi: 10.1038/s41573-023-00775-6. Epub 2023 Aug 31. Nat Rev Drug Discov. 2023. PMID: 37652974 Review.
-
Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications.Int J Mol Sci. 2021 Aug 5;22(16):8422. doi: 10.3390/ijms22168422. Int J Mol Sci. 2021. PMID: 34445123 Free PMC article. Review.
-
A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing.Mol Ther Nucleic Acids. 2022 Aug 1;29:525-537. doi: 10.1016/j.omtn.2022.07.024. eCollection 2022 Sep 13. Mol Ther Nucleic Acids. 2022. PMID: 36035749 Free PMC article.
References
-
- O’Brien KF, Kunkel LM. Dystrophin and muscular dystrophy: Past, present, and future. Mol Gen Metab. 2001;74:75–88. - PubMed
-
- Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2:731–740. - PubMed
-
- Mercuri E, Muntoni F. Muscular dystrophies. Lancet. 2013;381:845–860. - PubMed
-
- Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989;338:259–262. - PubMed
-
- Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990;345:315–319. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases