Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 22;58(1):119-133.
doi: 10.1021/acs.jcim.7b00309. Epub 2017 Dec 20.

Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment

Affiliations

Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment

Hossam M Ashtawy et al. J Chem Inf Model. .

Abstract

Molecular docking, scoring, and virtual screening play an increasingly important role in computer-aided drug discovery. Scoring functions (SFs) are typically employed to predict the binding conformation (docking task), binding affinity (scoring task), and binary activity level (screening task) of ligands against a critical protein target in a disease's pathway. In most molecular docking software packages available today, a generic binding affinity-based (BA-based) SF is invoked for all three tasks to solve three different, but related, prediction problems. The limited predictive accuracies of such SFs in these three tasks has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we develop BT-Score, an ensemble machine-learning (ML) SF of boosted decision trees and thousands of predictive descriptors to estimate BA. BT-Score reproduced BA of out-of-sample test complexes with correlation of 0.825. Even with this high accuracy in the scoring task, we demonstrate that the docking and screening performance of BT-Score and other BA-based SFs is far from ideal. This has motivated us to build two task-specific ML SFs for the docking and screening problems. We propose BT-Dock, a boosted-tree ensemble model trained on a large number of native and computer-generated ligand conformations and optimized to predict binding poses explicitly. This model has shown an average improvement of 25% over its BA-based counterparts in different ligand pose prediction scenarios. Similar improvement has also been obtained by our screening-based SF, BT-Screen, which directly models the ligand activity labeling task as a classification problem. BT-Screen is trained on thousands of active and inactive protein-ligand complexes to optimize it for finding real actives from databases of ligands not seen in its training set. In addition to the three task-specific SFs, we propose a novel multi-task deep neural network (MT-Net) that is trained on data from the three tasks to simultaneously predict binding poses, affinities, and activity levels. We show that the performance of MT-Net is superior to conventional SFs and on a par with or better than models based on single-task neural networks.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources