Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar;61(3):722-726.
doi: 10.1007/s00125-017-4509-7. Epub 2017 Dec 2.

Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation

Affiliations

Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation

Laween Uthman et al. Diabetologia. 2018 Mar.

Abstract

Aims/hypothesis: Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) constitute a novel class of glucose-lowering (type 2) kidney-targeted agents. We recently reported that the SGLT2i empagliflozin (EMPA) reduced cardiac cytosolic Na+ ([Na+]c) and cytosolic Ca2+ ([Ca2+]c) concentrations through inhibition of Na+/H+ exchanger (NHE). Here, we examine (1) whether the SGLT2i dapagliflozin (DAPA) and canagliflozin (CANA) also inhibit NHE and reduce [Na+]c; (2) a structural model for the interaction of SGLT2i to NHE; (3) to what extent SGLT2i affect the haemodynamic and metabolic performance of isolated hearts of healthy mice.

Methods: Cardiac NHE activity and [Na+]c in mouse cardiomyocytes were measured in the presence of clinically relevant concentrations of EMPA (1 μmol/l), DAPA (1 μmol/l), CANA (3 μmol/l) or vehicle. NHE docking simulation studies were applied to explore potential binding sites for SGTL2i. Constant-flow Langendorff-perfused mouse hearts were subjected to SGLT2i for 30 min, and cardiovascular function, O2 consumption and energetics (phosphocreatine (PCr)/ATP) were determined.

Results: EMPA, DAPA and CANA inhibited NHE activity (measured through low pH recovery after NH4+ pulse: EMPA 6.69 ± 0.09, DAPA 6.77 ± 0.12 and CANA 6.80 ± 0.18 vs vehicle 7.09 ± 0.09; p < 0.001 for all three comparisons) and reduced [Na+]c (in mmol/l: EMPA 10.0 ± 0.5, DAPA 10.7 ± 0.7 and CANA 11.0 ± 0.9 vs vehicle 12.7 ± 0.7; p < 0.001). Docking studies provided high binding affinity of all three SGLT2i with the extracellular Na+-binding site of NHE. EMPA and CANA, but not DAPA, induced coronary vasodilation of the intact heart. PCr/ATP remained unaffected.

Conclusions/interpretation: EMPA, DAPA and CANA directly inhibit cardiac NHE flux and reduce [Na+]c, possibly by binding with the Na+-binding site of NHE-1. Furthermore, EMPA and CANA affect the healthy heart by inducing vasodilation. The [Na+]c-lowering class effect of SGLT2i is a potential approach to combat elevated [Na+]c that is known to occur in heart failure and diabetes.

Keywords: Cardiac; Diabetes; Heart failure; Na+/H+ exchanger; SGLT2i; Sodium; Vasodilation.

PubMed Disclaimer

Conflict of interest statement

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

CAS, JWTF, MWH and NCW contributed to the analysis planning and interpretation of data, and reviewed and edited the manuscript. MJ and AK contributed to the acquisition of data and reviewed the manuscript. LU, AB, BB, RC and CJZ contributed to the conception and design, acquisition of data, and analysis and interpretation of data, and drafting or revising the critical intellectual content of the manuscript. All authors are responsible for the content and approved the final version. CJZ is guarantor of this work.

Figures

Fig. 1
Fig. 1
EMPA, CANA and DAPA inhibit NHE activity, reduce [Na+]c and bind to the Na+-binding site of NHE-1. (a) SGLT2i inhibit NHE activity in cardiomyocytes. Recovery of the pH is a measure of NHE activity and was only seen in vehicle (black line). All three drugs blocked pH recovery, and thus NHE activation, significantly, compared with vehicle (***p < 0.001). (b) [Na+]c was reduced in all three SGLT2i (***p < 0.001). Data are presented as mean ± SD and are derived from eight cells from four mouse hearts for each condition. (c) In silico analysis of SGLT2i binding to a homology model of NHE. All three SGLT2i efficiently bind to the Na+-binding pocket of NHE. Calculated binding affinities of SGLT2i are much higher than the negative control, glucose. EMPA is shown in blue, DAPA is shown in red and CANA is shown in green
Fig. 2
Fig. 2
EMPA and CANA induced coronary vasodilation in the healthy intact heart. Hearts were perfused for 30 min with vehicle (0.02% DMSO; n = 15, black bars), 1 μmol/l EMPA (n = 9, white bars), 1 μmol/l DAPA (n = 10, light grey bars) or 3 μmol/l CANA (n = 10, dark grey bars). (a) EMPA and CANA significantly reduced perfusion pressure after 30 min (*p < 0.05). (b) SGLT2i administration did not change rate pressure product (RPP) and (c) PCr/ATP (vehicle n = 13, EMPA n = 8, DAPA n = 10, CANA n = 10). Values at t = 30 min are normalised to values at t = 0 min from the same condition. (d) No changes were observed for O2 consumption for all three SGLT2i (vehicle n = 12, EMPA n = 8, DAPA n = 8, CANA n = 10). The dashed line in each graph represents the mean of vehicle condition. Data for perfusion pressure (a) and RPP (b) are presented as mean ± SD; data of PCr/ATP (c) and O2 consumption (d) are presented as median, interquartile range

References

    1. Reddy RPM, Inzucchi SE. SGLT2 inhibitors in the management of type 2 diabetes. Endocrine. 2016;53:364–372. doi: 10.1007/s12020-016-0943-4. - DOI - PubMed
    1. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. - DOI - PubMed
    1. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. - DOI - PubMed
    1. Baartscheer A, Schumacher CA, Wüst RCI, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568–573. doi: 10.1007/s00125-016-4134-x. - DOI - PMC - PubMed
    1. Yokoyama H, Gunasegaram S, Harding SE, Avkiran M. Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol. 2000;36:534–540. doi: 10.1016/S0735-1097(00)00730-0. - DOI - PubMed

MeSH terms