Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb;52(1):9-21.
doi: 10.1016/j.jmii.2017.10.006. Epub 2017 Nov 21.

Update on fosfomycin-modified genes in Enterobacteriaceae

Affiliations
Free article
Review

Update on fosfomycin-modified genes in Enterobacteriaceae

Tsung-Ying Yang et al. J Microbiol Immunol Infect. 2019 Feb.
Free article

Abstract

The long-used antibiotic fosfomycin has recently been re-evaluated as a potential regimen for treating extended-spectrum β-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE). Fosfomycin is known for its robust bactericidal effect against ESBL-producing Enterobacteriaceae and CRE. However, fosfomycin-modified genes have been reported in transposon elements and conjugative plasmids, resulting in fosfomycin resistance in parts of East Asia. Here we review reports of fosfomycin-modified (fos) genes in Enterobacteriaceae and assess the efficacy of fosfomycin against multidrug-resistant Enterobacteriaceae infections. At least 10 kinds of fos genes have been identified in the past decade; of these, fosA (and fosA subtypes) and fosC2 are primarily found in Enterobacteriaceae. All fosA subtypes except fosA2 are found in plasmids and transposons, nearby insertion sequence elements, or integrons, indicating that mobilizing elements also play an important role in plasmid-mediated fos genes in Enterobacteriaceae. fosA3, which is prevalent in East Asia, has been transmitted (mostly by animals) within and across continents via IS26 mobile elements. The acquisition of multiple antibiotic resistance genes via plasmids and mobile elements has resulted in a need for combined treatments for Enterobacteriaceae cases. The combination of fosfomycin and carbapenem has been the focus of many in vitro studies, but there is a clear need for additional in vivo investigations involving pharmacokinetics.

Keywords: Combinational therapy; Fosfomycin-modified genes.

PubMed Disclaimer

MeSH terms

LinkOut - more resources