The effects of heavy metal cations and sulfhydryl reagents on degranulation from digitonin-permeabilized neutrophils
- PMID: 2920180
- DOI: 10.1016/0167-4889(89)90057-8
The effects of heavy metal cations and sulfhydryl reagents on degranulation from digitonin-permeabilized neutrophils
Abstract
Digitonin-permeabilized neutrophils were exposed to micromolar levels of a variety of heavy metal cations and sulfhydryl oxidants to gain insight into the potential biochemical mechanisms underlying neutrophil degranulation. The results from this study suggest that the oxidation of intracellular sulfhydryl groups may play a role in neutrophil signal transduction. Evidence to support this conclusion is based on the observation that cupric phenanthroline and Cu2+/cysteine, agents reported to induce disulfide bond formation, evoke significant granule enzyme release when presented to permeabilized neutrophils. The stimulatory actions of these compounds occur in the absence of Ca2+ and are blocked by the sulfhydryl reducing agent, dithiothreitol. In addition, we observed marked potentiation of Ca2+-induced secretion by potentially physiological levels of Ni2+. Although we are unaware of any Ni2+-requiring enzymes in eukaryotic cells that are likely to be pertinent to degranulation, the ability of this divalent metal cation to lower the Ca2+ requirements for granule secretion suggests that it may play an important regulatory role in Ca2+-dependent processes. Finally, we observed significant granule release when permeabilized neutrophils were exposed to the heavy metal cations, Hg2+ and Ag+. The apparent stimulatory actions of these metals were the result of lysis rather than degranulation. Thus, the ability of these metals to lyse intracellular organelles such as lysosomal granules may contribute to their toxicological properties.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous