Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 5;9(1):108.
doi: 10.1186/s13073-017-0492-3.

Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists

Affiliations

Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists

Xun Zhu et al. Genome Med. .

Abstract

Background: Single-cell RNA sequencing (scRNA-Seq) is an increasingly popular platform to study heterogeneity at the single-cell level. Computational methods to process scRNA-Seq data are not very accessible to bench scientists as they require a significant amount of bioinformatic skills.

Results: We have developed Granatum, a web-based scRNA-Seq analysis pipeline to make analysis more broadly accessible to researchers. Without a single line of programming code, users can click through the pipeline, setting parameters and visualizing results via the interactive graphical interface. Granatum conveniently walks users through various steps of scRNA-Seq analysis. It has a comprehensive list of modules, including plate merging and batch-effect removal, outlier-sample removal, gene-expression normalization, imputation, gene filtering, cell clustering, differential gene expression analysis, pathway/ontology enrichment analysis, protein network interaction visualization, and pseudo-time cell series construction.

Conclusions: Granatum enables broad adoption of scRNA-Seq technology by empowering bench scientists with an easy-to-use graphical interface for scRNA-Seq data analysis. The package is freely available for research use at http://garmiregroup.org/granatum/app.

Keywords: Clustering; Differential expression; Gene expression; Graphical; Imputation; Normalization; Pathway; Pseudo-time; Single-cell; Software.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not sapplicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Granatum workflow. Granatum is built with the Shiny framework, which integrates the front-end with the back-end. A public server has been provided for easy access, and local deployment is also possible. The user uploads one or more expression matrices with corresponding metadata for samples. The back-end stores data separately for each individual user, and invokes third-party libraries on demand
Fig. 2
Fig. 2
Batch-effect removal. The PCA plots show the before/after median alignment comparison. The colors indicate the two batches 1 and 2, and the shapes indicate the three cell types reported from the original data. a Before batch-effect removal; b after batch-effect removal
Fig. 3
Fig. 3
Outlier removal using PCA plot. a Before outlier removal. b After outlier removal
Fig. 4
Fig. 4
Box-plot comparison of normalization methods. The cell size is down-sampled to representatively show the general effect of each method. The colors indicate the three cell types reported from the original data. a Original data (no normalization). b Quantile normalization. c Geometrical mean normalization. d Size-factor normalization. e Voom normalization
Fig. 5
Fig. 5
Comparison of DE genes identified by Granatum or ASAP pipeline. a MA plot. Blue color labels DE genes, and gray dots are non-DE genes. b Venn diagram showing the number of DE genes identified by both methods, as well as those uniquely identified by either pipeline. c Bar chart comparing the number of genes up regulated in primary cells (red) or metastasized cells (green). d Bubble plots of KEGG pathway GSEA results for the DE genes identified by either pipeline. The y-axis represents the enrichment score of the gene sets, the x-axis shows gene set names, and the size of the bubble indicates the number of genes in that gene set
Fig. 6
Fig. 6
Protein–protein interaction network and pseudo-time construction steps. a The PPI network derived from the DE results between PDX primary and metastasized cells in the K-dataset. The color on each node (gene) indicates its Z-score in the differential expression test. Red and blue indicate up- and down-regulation in metastasized cells, respectively. b The pseudo-time construction step. The Monocle algorithm is customized to visualize the paths among individual cells. Sample labels from the metadata are shown as different colors in the plot

Similar articles

Cited by

References

    1. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401. doi: 10.1126/science.1254257. - DOI - PMC - PubMed
    1. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. - DOI - PubMed
    1. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6. doi: 10.1038/nbt.2859. - DOI - PMC - PubMed
    1. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods. 2013;10:1093–5. - PubMed
    1. Poirion OB, Zhu X, Ching T, Garmire L. Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet. 2016;7:163. - PMC - PubMed

LinkOut - more resources