Improving Salt Tolerance of Chickpea Using Modern Genomics Tools and Molecular Breeding
- PMID: 29204084
- PMCID: PMC5684649
- DOI: 10.2174/1389202918666170705155252
Improving Salt Tolerance of Chickpea Using Modern Genomics Tools and Molecular Breeding
Abstract
Introduction: The high protein value, essential minerals, dietary fibre and notable ability to fix atmospheric nitrogen make chickpea a highly remunerative crop, particularly in low-input food production systems. Of the variety of constraints challenging chickpea productivity worldwide, salinity remains of prime concern owing to the intrinsic sensitivity of the crop. In view of the projected expansion of chickpea into arable and salt-stressed land by 2050, increasing attention is being placed on improving the salt tolerance of this crop. Considerable effort is currently underway to address salinity stress and substantial breeding progress is being made despite the seemingly highly-complex and environment-dependent nature of the tolerance trait.
Conclusion: This review aims to provide a holistic view of recent advances in breeding chickpea for salt tolerance. Initially, we focus on the identification of novel genetic resources for salt tolerance via extensive germplasm screening. We then expand on the use of genome-wide and cost-effective techniques to gain new insights into the genetic control of salt tolerance, including the responsive genes/QTL(s), gene(s) networks/cross talk and intricate signalling cascades.
Keywords: Chickpea; DNA markers; Genomics; Molecular breeding; QTL; RNA-Seq; Salinity; Tolerance; Transcript.
Figures

Similar articles
-
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.BMC Plant Biol. 2011 Feb 14;11:31. doi: 10.1186/1471-2229-11-31. BMC Plant Biol. 2011. PMID: 21320317 Free PMC article.
-
Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.Plant Cell Rep. 2019 Mar;38(3):255-277. doi: 10.1007/s00299-019-02374-5. Epub 2019 Jan 12. Plant Cell Rep. 2019. PMID: 30637478 Review.
-
Integrating genomics for chickpea improvement: achievements and opportunities.Theor Appl Genet. 2020 May;133(5):1703-1720. doi: 10.1007/s00122-020-03584-2. Epub 2020 Apr 6. Theor Appl Genet. 2020. PMID: 32253478 Free PMC article. Review.
-
Enhancement of Plant Productivity in the Post-Genomics Era.Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507. Curr Genomics. 2016. PMID: 27499678 Free PMC article.
-
Novel Salinity Tolerance Loci in Chickpea Identified in Glasshouse and Field Environments.Front Plant Sci. 2021 Apr 28;12:667910. doi: 10.3389/fpls.2021.667910. eCollection 2021. Front Plant Sci. 2021. PMID: 33995463 Free PMC article.
Cited by
-
Comparative Flower Transcriptome Network Analysis Reveals DEGs Involved in Chickpea Reproductive Success during Salinity.Plants (Basel). 2022 Feb 5;11(3):434. doi: 10.3390/plants11030434. Plants (Basel). 2022. PMID: 35161414 Free PMC article.
-
Arthrospira promotes plant growth and soil properties under high salinity environments.Front Plant Sci. 2023 Dec 5;14:1293958. doi: 10.3389/fpls.2023.1293958. eCollection 2023. Front Plant Sci. 2023. PMID: 38116155 Free PMC article.
-
Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars.Bioengineering (Basel). 2022 Sep 22;9(10):495. doi: 10.3390/bioengineering9100495. Bioengineering (Basel). 2022. PMID: 36290463 Free PMC article. Review.
-
OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice.Plant Cell Rep. 2023 Feb;42(2):223-234. doi: 10.1007/s00299-022-02950-2. Epub 2022 Nov 9. Plant Cell Rep. 2023. PMID: 36350394
-
Comprehensive transcriptomic analysis of two RIL parents with contrasting salt responsiveness identifies polyadenylated and non-polyadenylated flower lncRNAs in chickpea.Plant Biotechnol J. 2022 Jul;20(7):1402-1416. doi: 10.1111/pbi.13822. Epub 2022 May 13. Plant Biotechnol J. 2022. PMID: 35395125 Free PMC article.
References
-
- Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar’an B., Millan T., Zhang X., Ramsay L.D., Iwata A., Wang Y., Nelson W., Farmer A.D., Gaur P.M., Soderlund C., Penmetsa R.V., Xu C., Bharti A.K., He W., Winter P., Zhao S., Hane J.K., Carrasquilla-Garcia N., Condie J.A., Upadhyaya H.D., Luo M.C., Thudi M., Gowda C.L., Singh N.P., Lichtenzveig J., Gali K.K., Rubio J., Nadarajan N., Dolezel J., Bansal K.C., Xu X., Edwards D., Zhang G., Kahl G., Gil J., Singh K.B., Datta S.K., Jackson S.A., Wang J., Cook D.R. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013;31(3):240–246. - PubMed
-
- Alarcon-Valdez C., Milan-Carrillo J., Cardenas-Valenzuela O.G., Mora-Escobedo R., Bello-Perez L.A., Reyes-Moreno C. Infant food from quality protein maize and chickpea: optimization for preparing and nutritional properties. Int. J. Food Sci. Nutr. 2005;56(4):273–285. - PubMed
-
- Pushpavalli R., Krishnamurthy L., Thudi M., Gaur P.M., Rao M.V., Siddique K.H., Colmer T.D., Turner N.C., Varshney R.K., Vadez V. Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 x JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol. 2015;15:124. - PMC - PubMed
-
- Abbo S., Saranga Y., Peleg Z., Kerem Z., Lev-Yadun S., Gopher A. Reconsidering domestication of legumes versus cereals in the ancient near east. Q. Rev. Biol. 2009;84(1):29–50. - PubMed
-
- Milan-Carrillo J., Valdez-Alarcon C., Gutierrez-Dorado R., Cardenas-Valenzuela O.G., Mora-Escobedo R., Garzon-Tiznado J.A., Reyes-Moreno C. Nutritional properties of quality protein maize and chickpea extruded based weaning food. Plant Foods Hum. Nutr. 2007;62(1):31–37. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources