Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 6;17(1):162.
doi: 10.1186/s12874-017-0442-1.

When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts

Affiliations

When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts

Janus Christian Jakobsen et al. BMC Med Res Methodol. .

Abstract

Background: Missing data may seriously compromise inferences from randomised clinical trials, especially if missing data are not handled appropriately. The potential bias due to missing data depends on the mechanism causing the data to be missing, and the analytical methods applied to amend the missingness. Therefore, the analysis of trial data with missing values requires careful planning and attention.

Methods: The authors had several meetings and discussions considering optimal ways of handling missing data to minimise the bias potential. We also searched PubMed (key words: missing data; randomi*; statistical analysis) and reference lists of known studies for papers (theoretical papers; empirical studies; simulation studies; etc.) on how to deal with missing data when analysing randomised clinical trials.

Results: Handling missing data is an important, yet difficult and complex task when analysing results of randomised clinical trials. We consider how to optimise the handling of missing data during the planning stage of a randomised clinical trial and recommend analytical approaches which may prevent bias caused by unavoidable missing data. We consider the strengths and limitations of using of best-worst and worst-best sensitivity analyses, multiple imputation, and full information maximum likelihood. We also present practical flowcharts on how to deal with missing data and an overview of the steps that always need to be considered during the analysis stage of a trial.

Conclusions: We present a practical guide and flowcharts describing when and how multiple imputation should be used to handle missing data in randomised clinical.

Keywords: Missing data; Multiple imputation; Randomised clinical trials.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart: when should multiple imputation be used to handle missing data when analysing results of randomised clinical trials
Fig. 2
Fig. 2
Flowchart of multiple imputation

Similar articles

Cited by

References

    1. Groenwold RHH, Moons KGM, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. CMAJ Can Med Assoc J. 2014;186(15):1153–1157. doi: 10.1503/cmaj.131353. - DOI - PMC - PubMed
    1. Nguyen TL, Collins GS, Lamy A, Devereaux PJ, Daures JP, Landais P, Le Manach Y. Simple randomization did not protect against bias in smaller trials. J Clin Epidemiol. 2017;84:105–113. doi: 10.1016/j.jclinepi.2017.02.010. - DOI - PubMed
    1. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–1360. doi: 10.1056/NEJMsr1203730. - DOI - PMC - PubMed
    1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:157–60. - PMC - PubMed
    1. Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343–358. - PMC - PubMed

LinkOut - more resources