Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 15;362(2):260-267.
doi: 10.1016/j.yexcr.2017.11.026. Epub 2017 Dec 5.

Inhibition of TGF-β pathway reverts extracellular matrix remodeling in T. cruzi-infected cardiac spheroids

Affiliations
Free article

Inhibition of TGF-β pathway reverts extracellular matrix remodeling in T. cruzi-infected cardiac spheroids

Patrícia M Ferrão et al. Exp Cell Res. .
Free article

Abstract

Chagasic cardiomyopathy (CC) is the main manifestation of Chagas Disease (CD). CC is a progressive dysfunctional illness, in which transforming growth factor beta (TGF-β) plays a central role in fibrogenesis and hypertrophy. In the present study, we tested in a three-dimensional (3D) model of cardiac cells culture (named cardiac spheroids), capable of mimicking the aspects of fibrosis and hypertrophy observed in CC, the role of TGF-β pathway inhibition in restoring extracellular matrix (ECM) balance disrupted by T. cruzi infection. Treatment of T. cruzi-infected cardiac spheroids with SB 431542, a selective inhibitor of TGF-β type I receptor, resulted in a reduction in the size of spheroids, which was accompanied by a decrease in parasite load and in fibronectin expression. The inhibition of TGF-β pathway also promoted an increase in the activity of matrix metalloproteinase (MMP)-2 and a decrease in tissue inhibitor of matrix metalloproteinase (TIMP)-1 expression, which may be one of the mechanisms regulating extracellular matrix remodeling. Therefore, our study provides new insights into the molecular mechanisms by which inhibition of TGF-β signaling reverts fibrosis and hypertrophy generated by T. cruzi during CC and also highlights the use of cardiac spheroids as a valuable tool for the study of fibrogenesis and anti-fibrotic compounds.

Keywords: 3D cell culture; Cardiac spheroids; Extracellular matrix; SB 431542; T. cruzi; TGF-β.

PubMed Disclaimer

Publication types

MeSH terms

Substances