Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Nov 21;23(43):7735-7745.
doi: 10.3748/wjg.v23.i43.7735.

Combined endovascular brachytherapy, sorafenib, and transarterial chemobolization therapy for hepatocellular carcinoma patients with portal vein tumor thrombus

Affiliations
Clinical Trial

Combined endovascular brachytherapy, sorafenib, and transarterial chemobolization therapy for hepatocellular carcinoma patients with portal vein tumor thrombus

Zi-Han Zhang et al. World J Gastroenterol. .

Abstract

Aim: To evaluate the safety and efficacy of combined endovascular brachytherapy (EVBT), transarterial chemoembolization (TACE), and sorafenib to treat hepatocellular carcinoma (HCC) patients with main portal vein tumor thrombus (MPVTT).

Methods: This single-center retrospective study involved 68 patients with unresectable HCC or those who were unfit for liver transplantation and percutaneous frequency ablation according to the BCLC classification. All patients had Child-Pugh classification grade A or B, Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, and MPVTT. The patients received either EVBT with stent placement, TACE, and sorafenib (group A, n = 37), or TACE with sorafenib (group B, n = 31). The time to progression (TTP) and overall survival (OS) were evaluated by propensity score analysis.

Results: In the entire cohort, the 6-, 12-, and 24-mo survival rates were 88.9%, 54.3%, and 14.1% in group A, and 45.8%, 0%, and 0% in group B, respectively (P < 0.001). The median TTP and OS were significantly longer in group A than group B (TTP: 9.0 mo vs 3.4 mo, P < 0.001; OS: 12.3 mo vs 5.2 mo, P < 0.001). In the propensity score-matched cohort, the median OS was longer in group A than in group B (10.3 mo vs 6.0 mo, P < 0.001). Similarly, the median TTP was longer in group A than in group B (9.0 mo vs 3.4 mo, P < 0.001). Multivariate Cox analysis revealed that the EVBT combined with stent placement, TACE, and sorafenib strategy was an independent predictor of favorable OS (HR = 0.18, P < 0.001).

Conclusion: EVBT combined with stent placement, TACE, and sorafenib might be a safe and effective palliative treatment option for MPVTT.

Keywords: Endovascular brachytherapy; Hepatocellular carcinoma; Main portal vein tumor thrombus; Sorafenib; Transarterial chemoembolization.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors have no conflict of interest to disclose.

Figures

Figure 1
Figure 1
Images from a 50-year-old man who had hepatocellular carcinoma with main portal vein tumor thrombus. A: Contrast-enhanced abdominal magnetic resonance imaging before therapy. Diffuse hepatocellular carcinoma (white arrow) was detected in the left lobe. B: The second order of the right portal vein (black arrow) was patent. Tumor thrombus (white arrow) was observed in the left portal vein, the first order of the right portal vein, and the main portal vein. C: Contrast-enhanced abdominal CT image 24 mo after first therapy. Deposition of iodized oil (white arrow) within tumor was observed and the left lobe was atrophied. D: The stent was still patent (white arrow).
Figure 2
Figure 2
Images of iodine-125 seed strand and stent placement. A: After the patent second-order branch of the left portal vein was catheterized, a 5-F calibrated pigtail catheter (white arrow) was placed in the splenic vein. Tumor thrombus (black arrows) in the proximal MPV and sagittal segment of right portal vein was shown clearly on portography, but the right portal vein did not develop. B: A 14-mm x 80-mm self-expandable stent (black arrow) and 125I seed strand (white arrow) with 20 seeds loaded were placed precisely in the obstructed MPV. C: Images of SPECT/CT scan 1 d after therapy. MPV: Main portal vein.
Figure 3
Figure 3
Patient selection and cohorting. MPVTT: Main portal vein tumor thrombus; HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; EVBT: Endovascular brachytherapy.
Figure 4
Figure 4
Overall survival of the overall cohort and matched cohort. A: Kaplan-Meier curves for the overall patient cohort. OS differed between the two groups (OS, 12.3 vs 5.2 mo; P < 0.001); B: Kaplan-Meier curves for disease free survival in the overall patient cohort. C: Kaplan-Meier curves for OS in propensity score-matched patiens. Median OS was longer in group A than in group B (10.3 vs 6.0 mo; P < 0.001); D: Kaplan-Meier curves for disease free survival in propensity score-matched

Similar articles

Cited by

References

    1. Pirisi M, Avellini C, Fabris C, Scott C, Bardus P, Soardo G, Beltrami CA, Bartoli E. Portal vein thrombosis in hepatocellular carcinoma: age and sex distribution in an autopsy study. J Cancer Res Clin Oncol. 1998;124:397–400. - PubMed
    1. Ikai I, Hatano E, Hasegawa S, Fujii H, Taura K, Uyama N, Shimahara Y. Prognostic index for patients with hepatocellular carcinoma combined with tumor thrombosis in the major portal vein. J Am Coll Surg. 2006;202:431–438. - PubMed
    1. Wu CC, Hsieh SR, Chen JT, Ho WL, Lin MC, Yeh DC, Liu TJ, P’eng FK. An appraisal of liver and portal vein resection for hepatocellular carcinoma with tumor thrombi extending to portal bifurcation. Arch Surg. 2000;135:1273–1279. - PubMed
    1. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–1022. - PMC - PubMed
    1. Lee DS, Seong J. Radiotherapeutic options for hepatocellular carcinoma with portal vein tumor thrombosis. Liver Cancer. 2014;3:18–30. - PMC - PubMed

Publication types

MeSH terms