An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers
- PMID: 29211728
- PMCID: PMC5718430
- DOI: 10.1371/journal.pone.0186459
An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers
Abstract
Objectives: The co-primary objectives of this study were to determine the human pharmacokinetics (PK) of oral NR and the effect of NR on whole blood nicotinamide adenine dinucleotide (NAD+) levels.
Background: Though mitochondrial dysfunction plays a critical role in the development and progression of heart failure, no mitochondria-targeted therapies have been translated into clinical practice. Recent murine studies have reported associations between imbalances in the NADH/NAD+ ratio with mitochondrial dysfunction in multiple tissues, including myocardium. Moreover, an NAD+ precursor, nicotinamide mononucleotide, improved cardiac function, while another NAD+ precursor, nicotinamide riboside (NR), improved mitochondrial function in muscle, liver and brown adipose. Thus, PK studies of NR in humans is critical for future clinical trials.
Methods: In this non-randomized, open-label PK study of 8 healthy volunteers, 250 mg NR was orally administered on Days 1 and 2, then uptitrated to peak dose of 1000 mg twice daily on Days 7 and 8. On the morning of Day 9, subjects completed a 24-hour PK study after receiving 1000 mg NR at t = 0. Whole-blood levels of NR, clinical blood chemistry, and NAD+ levels were analyzed.
Results: Oral NR was well tolerated with no adverse events. Significant increases comparing baseline to mean concentrations at steady state (Cave,ss) were observed for both NR (p = 0.03) and NAD+ (p = 0.001); the latter increased by 100%. Absolute changes from baseline to Day 9 in NR and NAD+ levels correlated highly (R2 = 0.72, p = 0.008).
Conclusions: Because NR increases circulating NAD+ in humans, NR may have potential as a therapy in patients with mitochondrial dysfunction due to genetic and/or acquired diseases.
Conflict of interest statement
Figures





References
-
- Kolwicz SC Jr., Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–16. doi: 10.1161/CIRCRESAHA.113.302095 - DOI - PMC - PubMed
-
- Marin-Garcia J, Goldenthal MJ. Mitochondrial centrality in heart failure. Heart Fail Rev. 2008;13(2):137–50. doi: 10.1007/s10741-007-9079-1 - DOI - PubMed
-
- Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140–51. doi: 10.1056/NEJMra063052 - DOI - PubMed
-
- Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. Journal of the American College of Cardiology. 2013;61(6):599–610. doi: 10.1016/j.jacc.2012.08.1021 - DOI - PMC - PubMed
-
- Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709–24. doi: 10.1161/CIRCRESAHA.113.300376 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical