Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 6;8(55):94142-94150.
doi: 10.18632/oncotarget.21589. eCollection 2017 Nov 7.

Naringin improves random skin flap survival in rats

Affiliations

Naringin improves random skin flap survival in rats

Liang Cheng et al. Oncotarget. .

Abstract

Background: Random-pattern flap transfer is commonly used to treat soft-tissue defects. However, flap necrosis remains a serious problem. Naringin accelerates angiogenesis by activating the expression of vascular endothelial growth factor (VEGF). In the present study, we investigated whether naringin improves the survival of random skin flaps.

Results: Compared with controls, the naringin-treated groups exhibited significantly larger mean areas of flap survival, significantly increased SOD activity and VEGF expression, and significantly reduced MDA level. Hematoxylin and eosin (HE) staining revealed that naringin promoted angiogenesis and inhibited inflammation.

Materials and methods: "McFarlane flap" models were established in 90 male Sprague-Dawley (SD) rats divided into three groups: a 40 mg/kg control group (0.5 % sodium carboxymethylcellulose), a 40 mg/kg naringin-treated group, and an 80 mg/kg naringin-treated group. The extent of necrosis was measured 7 days later, and tissue samples were subjected to histological analysis. Angiogenesis was evaluated via lead oxide-gelatin angiography, immunohistochemistry, and laser Doppler imaging. Inflammation was evaluated by measurement of serum TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) levels. Oxidative stress was assessed by measuring superoxide dismutase (SOD) activity and the malondialdehyde (MDA) level.

Conclusion: Naringin improved random skin flap survival.

Keywords: angiogenesis; inflammation; naringin; random flap survival; rat.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1. Digital photographs of flaps from the three groups and the necrosis parts were outlined by red line
Figure 2
Figure 2. Percentage of survival area on day 7 in three groups (**p < 0.01 vs. the control group)
Figure 3
Figure 3
(A) Histological changes in the each area of the flaps in the three groups (100 and 200 magnification). (B) The MVDs of area II in the three groups (**p < 0.01 vs. the control group). Yellow arrow indicated the microvascular and white arrow indicated the neutrophil cells.
Figure 4
Figure 4. Flap angiography presenting flaps from the three groups
Figure 5
Figure 5
(A) Comparison of VEGF expression in the intermediate area II of the three groups. The immunohistochemistry test and observed under magnification 200. (B) IA value was detected to compare the level of VEGF (**p < 0.01 vs. the control group). IA, integral absorbance; VEGF, vascular endothelial growth factor.
Figure 6
Figure 6
(A) The blood perfusion on day 7 in three groups. (B) Mean blood flow of the second choke zone in the flap in three groups measured by laser Doppler imaging at day 7 after surgery (**p < 0.01 vs. the control group).
Figure 7
Figure 7
(A, B) The expression of the flap inflammation reaction factor (TNF-a, IL-6) (**p < 0.01 vs. the control group). (C, D) The expression of the flap oxidative stress factor (SOD, MDA) (**p < 0.01 vs. the control group).
Figure 8
Figure 8
(A) A McFarlane flap model was designed (3×9 cm) and three parts were divided (I, II, and III); (B) no axial vessels were incorporated into the flap; (C) the rats had a self-mutilation tendency and they would bite the flaps on their back and cause flap injuries; (D) the rats were fitted with a neck collar to prevent self-mutilation.

References

    1. Turan A, Kul Z, Turkaslan T, Ozyigit T, Ozsoy Z. Reconstruction of lower half defects of the nose with the lateral nasal artery pedicle nasolabial island flap. Plast Reconstr Surg. 2007;119:1767–1772. - PubMed
    1. Ji C1, Li R, Shen G, Zhang J, Liang W. Multiple pedicled flaps cover for large defects following resection of malignant tumors with partition concept. Medicine (Baltimore) 2017;96:e7455. - PMC - PubMed
    1. Kim J, Lee J, Chang E, Suh K. Immediate extended latissimus dorsi flap reconstruction after skin-sparing mastectomy for breast cancer associated with paraffinoma: report of a case. Surg Today. 2011;41:1680–1683. - PubMed
    1. Prasad V, Morris SF. Propeller DICAP flap for a large defect on the back-case report and review of the literature. Microsurgery. 2012;32:617–621. - PubMed
    1. Kim YS, Roh TS, Lee WJ, Yoo WM, Tark KC. The effect of botulinum toxin A on skin flap survival in rats. Wound Repair Regen. 2009;17:411–417. - PubMed

LinkOut - more resources