Comparative gene co-expression network analysis of epithelial to mesenchymal transition reveals lung cancer progression stages
- PMID: 29212455
- PMCID: PMC5719936
- DOI: 10.1186/s12885-017-3832-1
Comparative gene co-expression network analysis of epithelial to mesenchymal transition reveals lung cancer progression stages
Abstract
Background: The epithelial to mesenchymal transition (EMT) plays a key role in lung cancer progression and drug resistance. The dynamics and stability of gene expression patterns as cancer cells transition from E to M at a systems level and relevance to patient outcomes are unknown.
Methods: Using comparative network and clustering analysis, we systematically analyzed time-series gene expression data from lung cancer cell lines H358 and A549 that were induced to undergo EMT. We also predicted the putative regulatory networks controlling EMT expression dynamics, especially for the EMT-dynamic genes and related these patterns to patient outcomes using data from TCGA. Example EMT hub regulatory genes were validated using RNAi.
Results: We identified several novel genes distinct from the static states of E or M that exhibited temporal expression patterns or 'periods' during the EMT process that were shared in different lung cancer cell lines. For example, cell cycle and metabolic genes were found to be similarly down-regulated where immune-associated genes were up-regulated after middle EMT stages. The presence of EMT-dynamic gene expression patterns supports the presence of differential activation and repression timings at the transcriptional level for various pathways and functions during EMT that are not detected in pure E or M cells. Importantly, the cell line identified EMT-dynamic genes were found to be present in lung cancer patient tissues and associated with patient outcomes.
Conclusions: Our study suggests that in vitro identified EMT-dynamic genes capture elements of gene EMT expression dynamics at the patient level. Measurement of EMT dynamic genes, as opposed to E or M only, is potentially useful in future efforts aimed at classifying patient's responses to treatments based on the EMT dynamics in the tissue.
Keywords: Cancer progression; Comparative network analysis; EMT-dynamic signature genes; Epithelial to mesenchymal transition; Gene regulatory network; Lung cancer.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures





References
-
- SEER Program (National Cancer Institute (U.S.)), National Center for Health Statistics (U.S.), National Cancer Institute (U.S.). Surveillance Program., National Cancer Institute (U.S.). Cancer Statistics Branch., National Cancer Institute (U.S.). Cancer Control Research Program.: SEER cancer statistics review. In NIH publication. pp. volumes. Bethesda, Md.: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute; 1993:volumes.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical