Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar;68(3):463-7.
doi: 10.1177/00220345890680030501.

The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies

Affiliations

The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies

I H Pratt-Terpstra et al. J Dent Res. 1989 Mar.

Abstract

The influence of a pellicle on streptococcal adhesion was studied. A "ripened" two-hour salivary pellicle and an "early" five-minute salivary pellicle were formed on human enamel and artificial solid substrata with varying surface free-energies. Three strains of oral streptococci, also with widely different surface free-energies, were used for adhesion studies. Pellicle formation and streptococcal adhesion took place at a constant shear rate of 21 s-1. Adhesion of S. mitis BMS to bare and pellicle-covered enamel was low and not significantly affected by the presence of a pellicle (0.7 x 10(6) and 0.6 x 10(6) cells.cm-2, resp.), whereas the numbers of S. sanguis 12 and S. mutans NS adhering to bare enamel (4.2 x 10(6) cells.cm-2 and 13.8 x 10(6) cells, cm-2, resp) were significantly reduced by the presence of a pellicle. This reduction was almost complete after only five minutes of salivary protein adsorption (1.9 x 10(-6) and 1.1 x 10(6) cells.cm-2 for S. sanguis and S. mutans, resp.) but further reduced for S. sanguis adhering to a ripened pellicle (0.7 x 10(6) cells.cm-2). The numbers of streptococci adhering at equilibrium to bare enamel could be fitted to a thermodynamically based model, which was previously described for bacterial adhesion to homogenous artificial substrata. Streptococcal adhesion to artificial substrata exposed to saliva was low, and the differences among uncoated materials were markedly reduced even after only five minutes' exposure to saliva.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources