Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 20;9(50):43449-43458.
doi: 10.1021/acsami.7b13602. Epub 2017 Dec 7.

Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting

Affiliations

Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting

Scott A Wilson et al. ACS Appl Mater Interfaces. .

Abstract

Three-dimensional (3D) printing is an emerging approach for rapid fabrication of complex tissue structures using cell-loaded bioinks. However, 3D bioprinting has hit a bottleneck in progress because of the lack of suitable bioinks that are printable, have high shape fidelity, and are mechanically resilient. In this study, we introduce a new family of nanoengineered bioinks consisting of kappa-carrageenan (κCA) and two-dimensional (2D) nanosilicates (nSi). κCA is a biocompatible, linear, sulfated polysaccharide derived from red algae and can undergo thermo-reversible and ionic gelation. The shear-thinning characteristics of κCA were tailored by nanosilicates to develop a printable bioink. By tuning κCA-nanosilicate ratios, the thermo-reversible gelation of the bioink can be controlled to obtain high printability and shape retention characteristics. The unique aspect of the nanoengineered κCA-nSi bioink is its ability to print physiologically-relevant-scale tissue constructs without requiring secondary supports. We envision that nanoengineered κCA-nanosilicate bioinks can be used to 3D print complex, large-scale, cell-laden tissue constructs with high structural fidelity and tunable mechanical stiffness for regenerative medicine.

Keywords: 3D bioprinting; bioinks; hydrogels; nanocomposites; two-dimensional (2D) nanoparticles.

PubMed Disclaimer

LinkOut - more resources