Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 5;15(2):430-436.
doi: 10.1021/acs.molpharmaceut.7b00801. Epub 2017 Dec 22.

Structure Reconstruction of LyP-1: Lc(LyP-1) Coupling by Amide Bond Inspires the Brain Metastatic Tumor Targeted Drug Delivery

Affiliations

Structure Reconstruction of LyP-1: Lc(LyP-1) Coupling by Amide Bond Inspires the Brain Metastatic Tumor Targeted Drug Delivery

Xiaoyu Zhang et al. Mol Pharm. .

Abstract

The stability and binding affinity of targeting ligands are very important in active targeting drug delivery. Herein we used LyP-1 peptide as a model peptide to investigate chemical-biology-based strategies in the design of peptide ligands for active targeting. LyP-1 is a short peptide cyclized with a disulfide bond. It can specifically bind to tumor cells and tumor lymphatics through the interaction with cell-surface protein p32/gC1qR. Lc(LyP-1), with a same sequence of LyP-1, is coupled by amide bond. It showed better cellular uptake and stability in blood in our previous research. Further, usually d-peptide demonstrates higher stability than l-peptide, and it may contribute to better active targeting ability in vivo. Herein, we designed a retro-inverso isomer of Lc(LyP-1), termed Dc(LyP-1), expecting to inspire brain metastatic tumor targeted drug delivery. However, although Lc(LyP-1) showed lower stability than Dc(LyP-1) in fresh rat bold serum, both the 4T1 cellular uptake capacity (89.20%) and p32 protein binding affinity (7.39 × 10-6) were significantly higher than those (33.41%, 1.37 × 10-5) of Dc(LyP-1). Further, Lc(LyP-1) modified PEG-PLA micelles displayed much higher in vivo distribution in brain metastatic tumor than Dc(LyP-1). All results suggested that Lc(LyP-1) had a better performance than Dc(LyP-1) in brain metastatic tumor-targeted drug delivery.

Keywords: Lc(LyP-1); PEG−PLA micelles; brain metastatic tumor; retro-inverso isomer Dc(LyP-1); targeting drug delivery.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources