Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018:23:92-103.

Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies

Affiliations
  • PMID: 29218872
Free article

Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies

Jielin Xu et al. Pac Symp Biocomput. 2018.
Free article

Abstract

The emergence of drug resistance to traditional chemotherapy and newer targeted therapies in cancer patients is a major clinical challenge. Reactivation of the same or compensatory signaling pathways is a common class of drug resistance mechanisms. Employing drug combinations that inhibit multiple modules of reactivated signaling pathways is a promising strategy to overcome and prevent the onset of drug resistance. However, with thousands of available FDA-approved and investigational compounds, it is infeasible to experimentally screen millions of possible drug combinations with limited resources. Therefore, computational approaches are needed to constrain the search space and prioritize synergistic drug combinations for preclinical studies. In this study, we propose a novel approach for predicting drug combinations through investigating potential effects of drug targets on disease signaling network. We first construct a disease signaling network by integrating gene expression data with disease-associated driver genes. Individual drugs that can partially perturb the disease signaling network are then selected based on a drug-disease network "impact matrix", which is calculated using network diffusion distance from drug targets to signaling network elements. The selected drugs are subsequently clustered into communities (subgroups), which are proposed to share similar mechanisms of action. Finally, drug combinations are ranked according to maximal impact on signaling sub-networks from distinct mechanism-based communities. Our method is advantageous compared to other approaches in that it does not require large amounts drug dose response data, drug-induced "omics" profiles or clinical efficacy data, which are not often readily available. We validate our approach using a BRAF-mutant melanoma signaling network and combinatorial in vitro drug screening data, and report drug combinations with diverse mechanisms of action and opportunities for drug repositioning.

PubMed Disclaimer

Publication types

MeSH terms