Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 20:150:112-120.
doi: 10.1016/j.jpba.2017.11.060. Epub 2017 Nov 28.

High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS

Affiliations

High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS

Camille Merienne et al. J Pharm Biomed Anal. .

Abstract

Several studies have shown that therapeutic drug monitoring of tyrosine kinase inhibitors (TKI) can improve their benefit in cancer. An analytical tool has been developed in order to quantify 17 tyrosine kinase inhibitors and 2 metabolites in human plasma (afatinib, axitinib, bosutinib, crizotinib, dabrafenib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, ponatinib, regorafenib, regorafenib M2, regorafenib M5, ruxolitinib, sorafenib, sunitinib, vandetanib). Drugs were arranged in four groups, according to their plasma concentration range: 0.1-200ng/ml, 1-200ng/ml, 4-800ng/ml and 25-5000ng/ml. Solid phase extraction was used and separation was performed with HPLC using a gradient system on a solid core particle C18 column (5×2.1mm, 1.6μm). Ions were detected with a triple quadrupole mass spectrometry system. This assay allows rapid determination of 19 TKI in less than 5min per run. This high throughput routine method will be useful to adjust doses of oral anticancer drugs in order to improve treatments efficacy.

Keywords: Mass spectrometry; Targeted anticancer therapy; Therapeutic drug monitoring; Tyrosine kinase inhibitors; Ultra high pressure liquid chromatography.

PubMed Disclaimer

MeSH terms

Substances